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Abstract

Recent advancements in Sparse Autoencoders (SAEs)
have uncovered insightful features in large language models
(LLMs). In this study, we identify language-specific SAE
features, which are predominantly found in the later layers
of the LLM. Using these features, we steer the output lan-
guage of an LLM. In an experiment based on a translation
task, our method achieves a 49% accuracy in generating the
desired target language, outperforming a previous method
using individual language neurons for steering. This work
demonstrates the potential for SAE features for language

steering.

1 Introduction

Large language models (LLMs) process information in
a complex and compressed manner, making it difficult for
humans to understand. This challenge extends to the field
of multilinguality, where multilinguality in LLMs is cur-
rently being studied. Recent research has shown the ex-
istence of language neurons that can be used to steer the
output language [1]. In parallel, recent progress in mech-
anistic interpretability includes the development of Sparse
Autoencoders (SAEs) [2, 3], which help to break down the
hidden activations of an LLM into simpler and more in-
terpretable components, called features. In this work, we
build on these advances and show that there are language-
specific SAE features. We then use these features to steer

an LLM’s output language.
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2 Related work

This work builds on advances in research into multilin-
guality in LLMs, activation steering, and SAEs. Several
recent studies have researched multilinguality in LLMs,
providing insights into how these models handle multiple
languages. Muller et al. [4] demonstrated that the mul-
tilingual capabilities of LLMs are primarily concentrated
in the first and last layers, with a language-agnostic space
occupying the middle layers. Wendler et al. [5] found that
the representations in the middle layers lie close to English.

In the area of activation steering, Suau et al. [6] intro-
duced a method to identify individual neurons associated
with specific concepts and demonstrated how these neu-
rons can be used to steer model outputs. Building on this,
Kojima et al. [1] applied the concept of activation steering
to multilinguality, identifying language neurons and using
them to steer a model’s output language.

A key challenge in using individual neurons for steering
is the problem of “polysemanticity” [7] and “superposi-
tion” [8], where a single neuron can represent multiple
unrelated concepts simultaneously. This complicates pre-
cise control over the model’s behavior, as modifying one
neuron might unintentionally affect other unrelated fea-
tures. In contrast, SAE features decompose the internal
activations into more interpretable components, thereby
potentially reducing the risk of unintentionally activating
unrelated features. Specifically, an SAE is a weak dictio-
nary learning method applied to the internal activations of
amodel, which allows us to decompose the residual stream
into largely human-understandable features [2, 3]. These

features can be used to steer a model output, as demon-
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strated and further improved by Chalnev et al. [9].

In this work, we use SAE features to investigate a new
approach to language steering, combining insights from
multilinguality, activation steering, and mechanistic inter-

pretability.
3 Our method

Our steering method is fairly straightforward. First, we
find language-specific features in an SAE trained on the
residual stream of a layer of the target model. Next, we use

these features to steer the model’s output language.

3.1 Finding language-specific features

In our first step, we find language-specific features in
a series of pre-trained SAEs. We employ the following
two individual approaches to identify language-specific
features.

Language classifier approach We begin by observ-
ing all features of a given SAE. To determine language-
specific features, we examine the contexts in which a fea-
ture has its highest activations. We then use a language
classifier to classify the language of each context. If a
plurality of the contexts belongs to a specific language, we
classify the feature as a language-specific feature for that
language.

Feature description approach To identify
language-specific features based on their feature de-
scription, we use Neuronpedial> . Neuronpedia provides
autointerpretability explanations generated by an LLM.
This autointerpretability explanation is generated by
showing a feature’s top activating contexts to an LLM
and letting the LLM generate a likely explanation for
the feature’s role in the model. By searching these
explanations for the names of the steering languages, we

are able to find language-specific features.

3.2 Steering model output

Numerous methods have been proposed to control the
behavior of LLMs through steering by intervening in their
internal activations [10, 11, 12, 13]. In this study, we opt
for the most common approach, which involves adding a
steering vector to the activations [14]. In this method, the
decoder weights from a sparse autoencoder are extracted

at the index corresponding to the desired language-specific

1) https://www.neuronpedia.org/
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feature for constructing the steering vector. During the
forward pass, the steering vector is added to the residual
stream, mathematically represented as:

resid’ = resid + « - steering_vector,

where « is a scaling factor that adjusts the intensity of the
steering, and resid refers to the residual stream, which is the
sum of the outputs of all previous layers in the model. This
scaling factor allows the model’s output to be fine-tuned
to align with the target language. Notably, this minimally
invasive approach hooks into the residual stream without

modifying the model’s architecture.

4 Experiments

4.1 Finding language-specific features

Training an SAE requires substantial LLM activation
data. For example, the Gemmascope projeth) saved 20
Pebibytes of activation data while training their SAEs [15].
To avoid handling such large volumes of data, we used the
pre-trained SAEs from the Gemmascope project. Specif-
ically, we based our research on SAEs trained on Gemma
2 2BY.
of each of the 26 layers of the model, resulting in 26 in-
dividual SAEs. Each SAE is configured with a hidden
layer width of 2'#. For our feature description approach,
we also searched SAEs with a width of 2!°. The SAEs

come with a list of contexts for each feature’s highest acti-

These SAEs are trained on the residual streams

vations. Using the langid classifier [16], we classified the
language of these contexts. To cover an array of languages
from different language families, we focused on language-
specific features from German, French, Spanish, Chinese,
and Japanese. By using the language classifier approach
explained in Section 3.1, we found the language-specific
features shown in Figure 1. @NOTE: include smth like:
finally, bc other had too many features, we used manual
The language classifier approach yielded many features,
so we used our feature description approach explained in
Section 3.1 to find individual features to use in our steer-
ing experiment. We found the language-specific features
shown in Table 3 (in Appendix) to be effective in steering.

We did not identify English language features, a limita-
tion that we further discuss in Section 5.

2) https://ai.google.dev/gemma/docs/gemma_scope
3) https://huggingface.co/google/gemma-2-2b
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Figure 1 Amount of language-specific features per layer found
by the language classifier approach.

4.2 Steering model output

Experimental design For our steering experiments,
we followed a setup similar to that of Kojima et al. [1].
We conducted two types of experiments: unconditional
generation and conditional generation. For each experi-
ment, we generated 100 samples. For unconditional gen-
eration, we used a simple “<bos>" token (beginning-of-
sequence token) as the prompt to initiate text generation.
For conditional generation, we employed the FLORES-200
dataset [17] to create a controlled translation task. In this
task, we used a prompt of the following format:

Translate an English sentence into a target
language. English: {source_text}. Target
Language:
In both experiments, we applied the language-specific fea-
tures described in Table 3 (in Appendix) for steering.

To evaluate the effectiveness of our method, we mea-
sured two aspects: the accuracy of producing the desired
target language and the quality of the translations per-
formed by the model. In the unconditional generation
task, we only measured the accuracy, while in the condi-
tional generation task, we calculated both accuracy and the
BLEU score. To calculate the accuracy, we classified the
language of the generated text using the language identifi-
cation classifier FastText [18]. Mirroring Kojima et al. [1],
we used a classification score threshold of 0.5 and calcu-
lated the ratio of the target language occurrence, leaving
us with an accuracy value. For the BLEU score in the
conditional generation task, we calculated it between each
generated text and the corresponding ground-truth text. To
ensure comparability with Kojima et al. [1], we mirrored
the settings used in his study.

To find the optimal steering strength for each feature, we
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Table 1 Comparison of unconditional and conditional genera-
tion results.

Unconditional Conditional

Generation Generation
Language Strength Accuracy Accuracy BLEU
Spanish (es) 80 74% 77% 0.6
French (fr) 80 49% 74% 0.5
Chinese (zh) 75 65% 74% 0.2
German (de) 90 5% 14% 0.4
Japanese (ja) 95 3% 4% 0.1

ran unconditional generations of various steering strengths
and selected the steering strength that produced the highest
accuracy while still maintaining coherent output.

Steering results Table 1 shows the results for uncon-
ditional and conditional generation after we selected the
optimal steering strength for each language.

A positive correlation was observed between steering
strength and accuracy across all tasks, with a stronger
steering strength resulting in model outputs that were more
closely aligned with the intended language. Increasing the
steering strength increased the accuracy until reaching a
plateau, after which the accuracy did not improve further,
as seen in Figure 2 (in Appendix).

Table 2 shows some text generation examples. Low

coherence is noticeable.

5 Discussion

Comparison with Kojima et al. Table 4 (in Ap-
pendix) shows a comparison between our language steering
method based on SAE features, and the language neuron-
based method introduced by Kojima et al. [1]. For a cor-
rect comparison, we implemented Kojima et al.’s steer-
ing method on the Gemma 2 2B model. In terms of ac-
curacy, our approach outperformed the language neuron-
based method across most languages. However, both meth-
ods struggled to output coherent text, as seen in the very
low BLEU scores in Table 4 (in Appendix), as well as
in our example generations in Table 2. Other generations
showed even lower coherence than the ones presented in
this chart. In contrast to the low BLEU scores of both
our and Kojima et al.’s method for steering on Gemma
2 2B, in Kojima et al.’s work, higher BLEU scores were
achieved using a larger model, Llama 7B. However, since
we used the comparatively small Gemma 2 2B, coherent

output was not achieved by either method, and thus we

This work is licensed by the author(s) under CC BY 4.0
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Table 2 Generation Text Examples

Language Conditional Generation Unconditional Generation
de Enceladus ist im die von der unzenartigenobj auf. | In der Vorbereitungszeit fir den neuen Film Star
Wars: Das Erwachen der Macht" hat sich Regisseur
J.J. Abrams mit den
es En 11:20, el policia espafiol en el policio | The 2019-20 temporada de baloncesto, la Unica en
espafiol en la policio espafiola enlapoliciembre | curso que no ha sido cancelada por la pandemia del
elpoliciembreelpolic COVID-
fr Construction est a la cible pour cing nouveaux | 1. L’application de 1l’instance en appel est le
métres carrés carrés a la hauteur de cette nouvelle | procés-verbal de la réunion du 25 mars 2016 ;
construction révolutionnelle du coété, avec un
trans port centre et memorial
ja The XD STEVWDETESLSHEVTESIHACIIR | 2020 F1 B 198 (1) OBERS HA—FELHE
D CDZDZDID ] ThESES
zh Lead iiZS, AJBEREIE, P NIRRFAEBETEKRAE | 16 F, E5HAENLRESENE L, BREITBTE
R, FIREFHARERE H. ME. ABINERZE

could not meaningfully compare the BLEU scores.

Absence of English language steering A notable
limitation of our approach is the absence of identified
language-specific features for English. This is due to the
fact that except for our language-specific features, nearly
all features activate on English tokens, making it difficult
to isolate distinct English-only features. Future research
could focus on finding English-only features by checking
if a given feature activates only on English input and no
other input.

Steering strength vs. output quality Kojima et
al. [1] discussed a trade-off between the number of lan-
guage neurons used for steering and the quality of the
generation, as measured by the BLEU score. In our ex-
perimental setup, it is likely that the strength of steering
influenced the quality of the generated output. We verified
this manually by checking the coherence of the generated
text. However, due to the low quality of the generated
output, we could not investigate this relationship compre-
hensively.

Coherence of the generated output It is notewor-
thy that our SAE steering method failed to produce coher-
ent output, as seen in the low BLEU scores and generation
examples. We speculate that there are multiple reasons
for this. First, we measured the performance of steering
on the comparatively small Gemma 2 2B. We speculate
that our method would produce more coherent output in
larger models, as the same trend can be seen in Kojima et
al. [1]. Second, although Gemma 2 2B can generate co-
herent text when steered with other features, these features
are typically English. This suggests that the model’s lim-

ited size and its predominantly English training data limit
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its steering success. Third, SAE features may influence
the model’s behavior in unintended ways, as explored by
Chalnev et al. [9].

To address these challenges, we propose several potential
improvements to our approach. The most critical improve-
ment is a better feature selection. Future research should fo-
cus on refining the method of identifying language-specific
features. For instance, instead of classifying the language
of the entire context— much of which may not actually
activate the feature— a higher weight could be given to
the tokens in the context that actually lead to an activation
of the feature. Also, to further investigate the reason for
the inability to produce coherent output, investigating the
language features with the method introduced by Chalnev
et al. [9] could prove fruitful. Apart from an improved fea-
ture selection, improvements in the steering methods can
also be explored. For example, instead of single features,

an average of multiple features could be used.

6 Conclusion

This study has demonstrated that language-specific SAE
features exist. Although our method based on language
features cannot generate coherent text, its accuracy is com-
parable or superior to the method proposed by Kojima et al.
As highlighted in Section 5, there remain opportunities for
improvement. We hope that this study will lead to further
research into language-specific SAE features. Understand-
ing these language-specific features better will allow us to

further uncover how multilinguality in LLMs works.

This work is licensed by the author(s) under CC BY 4.0
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A Appendix

Table 3 Features used for steering.

Language | SAE width | Layer | Feature Index
German 16k 23 3923
French 16k 20 12332
Spanish 16k 20 8590
Chinese 65k 20 25936
Japanese 16k 23 13998
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Figure 2 Correlation between steering strength versus accuracy (Spanish feature)

Table 4 Performance of our method (SAE features) compared with the language neurons introduced by Kojima et al. [1]

Language Neurons SAE Features

Language Accuracy BLEU Accuracy BLEU

German 3.0 0.0 14.0 0.4

French 14.0 0.3 74.0 0.5

Spanish 6.0 0.1 77.0 0.6

Chinese 24.0 2.1 74.0 0.2

Japanese 34.0 1.6 4.0 0.1
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