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Abstract
We aim to explore the extent to which Large Language

Models (LLMs) can guide 3D digital human agents in
performing body movements without supervised training.
Given an existing human model and a textual instruction,
we prompt the LLM to generate a high-level plan decom-
posing the whole motion into consecutive steps, followed
by specifying the positions of every body part in each step.
We then render the animation by linearly interpolating the
selected body part positions across steps. We evaluate
the generated animations from a diverse set of motion in-
structions through both automatic and human evaluation,
and find that LLMs generally struggle to recognize accu-
rate body part positions. Specifically, LLMs struggle with
complex motions with multiple steps and body parts, and
complex body parts with more possible positions.

1 Introduction
Recent studies on Large Language Model (LLM)-based

generative agents [1, 2] demonstrate their capability to
produce open-ended behaviors in simulated environments.
However, these agents typically express actions and states
using text or emoji symbols in the absence of pre-defined
animations. This limitation poses challenges for imple-
menting digital human agents in 3D environments, where
body movements are essential for natural interactions.

Modern text-conditioned human motion generation ap-
proaches employ generative models to synthesize realistic
human body movements from natural language instruc-
tions [3, 4], but they often struggle with open-ended mo-
tion instructions due to overfitting to limited language-
motion paired datasets [5, 6]. Existing work attempts to
improve the generalization by using LLMs to extract spe-

cific motion-relevant information, such as active body parts
[7], detailed body part descriptions [8] and keyframe co-
ordinates [9]. However, these approaches typically utilize
LLMs in a limited capacity, primarily as auxiliary com-
ponents in their pipelines. We aim to explore to what
extent we can generate animations using only the rich in-
formation provided by LLMs, potentially opening up new
ways to create human motions in lack of pre-implemented
animations.

In this paper, we present a framework that purely lever-
ages LLMs to generate animations on SMPL [10], a stan-
dard 3D human model compatible with the Unity computer
graphics engine. 1）We provide a sketch of SMPL in Ap-
pendix A.1. Given the input motion instruction, the frame-
work first uses LLMs to generate a structured animation
plan with specific body part movements in natural lan-
guage, then translates these descriptions into Unity codes
specifying SMPL parameters using predefined rules, and
finally renders the animation in Unity.

We conduct both automatic evaluation, where we cal-
culate the accuracy of the LLM-selected positions against
annotated oracle ones, and human evaluation, where anno-
tators evaluate the animations both overall and body-part-
wise. We have the following findings:
(I) LLMs generally struggle to recognize accurate body
part positions: Compared with oracle standards, all tested
LLMs exhibit significant shortcomings in body part posi-
tion identification. The highest performer in human eval-
uation, Claude 3.5 Sonnet, trails the oracle’s overall score
by 1.28 points on a 5-point scale.
(II) LLMs struggle with human motion complexity:
Our analysis reveals a negative correlation between motion
complexity (defined by the number of moved body parts

1） https://unity.com/
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across steps) and the accuracy of selected body part posi-
tions. LLMs demonstrate lower accuracy for body parts
with more possible positions like the upper arm, compared
to more constrained parts like the upper leg. Moreover,
accuracy remains consistently higher for lower body com-
ponents than their upper body counterparts, highlighting
LLMs’ difficulties with complex and flexible movements.

2 Animation Generation
LLMs primarily learn about human motions through

natural language descriptions, rather than exact spatial co-
ordinates or temporal quantities. We therefore evaluate
LLMs’ human motion knowledge by testing their ability
to recognize appropriate body part positions described in
natural language. Figure 1 illustrates our pipeline of ani-
mation generation.

Firstly, given the joint structure of the SMPL model 𝑀
(Appendix A.1), we define a finite set of positions Text(𝑀)
for preset body parts. Following the natural hierarchy of
human motion from action sequences to body part move-
ments [11], we implement a hierarchical querying frame-
work 𝑄 that first decomposes the input motion instruction
𝐼 2）into sequential high-level steps, then iteratively speci-
fies body part positions from Text(𝑀). The LLM uses this
framework to acquire the animation plan 𝑃. While the po-
sition querying is conducted hierarchically, 3）we discuss
different querying strategies in Appendix A.3.

𝑃 = LLM𝑄 (𝐼, Text(𝑀)) (1)

Secondly, we use predefined Rules to convert 𝑃 into
Unity codes𝐶 by mapping the specified body part positions
to local joint rotations on 𝑀 , and inserting them into a code
template 𝑇 . 4）

𝐶 = Rules(𝑃,𝑇) (2)

Finally, we render the animation 𝐴 by executing 𝐶 on
𝑀 in Unity, where joint rotations are linearly interpolated
between consecutive steps.

𝐴 = Unity(𝐶, 𝑀) (3)

2） We show our tested motion instructions in Appendix A.2.
3） For example, when we query the position of the left elbow, first we

ask whether it is stright or bent. If it is bent, we further ask whether
it is slightly bent in, bent in 90 degrees or fully bent.

4） We avoid a naive method of generating Unity codes from the
given motion instruction in one go, since the codes can seldom be
successfully executed in Unity, and the few generated animations are
too low-quality for evaluation.

3 Evaluation

3.1 Automatic Evaluation

For each motion instruction, we first fix an oracle high-
level plan by calibrating one high-level plan generated from
GPT-4o, and manually annotate the oracle positions of all
body parts across steps. Then we calculate the accuracy
of the LLM-selected positions against the annotated oracle
ones (Body Part Position Accuracy). We run each LLM
three times to take the averaged accuracy.

The complexity of an annotated oracle motion is decided
by the numbers of moved body parts across steps. There-
fore, we define a new metric Motion Complexity as the
sum of step-wise ratios between moved and unmoved body
parts (Equation 4), where 𝑠 denotes the step number and
| · | represents the count of body parts.

𝑀𝑜𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑁∑
𝑠=1

|𝑚𝑜𝑣𝑒𝑑𝑠 |
|𝑢𝑛𝑚𝑜𝑣𝑒𝑑𝑠 |

(4)

3.2 Human Evaluation

While automatic evaluation fixes the oracle high-level
plans, we conduct human evaluation of the unconstrained
generation, to account for multiple valid ways of perform-
ing a motion. Each animation is assessed by five indepen-
dent annotators both overall and body-part-wise.

Overall Score. Given one animation and the corre-
sponding motion instruction, the evaluator checks to what
extent the animation is following the instructed motion,
and gives one integer overall score from one to five.

Body Part Label. We ask human evaluators to check
six body parts in the animations — Head, Torso, Left Arm,
Right Arm, Left Leg and Right Leg. Evaluators classify
each body part using one of four labels — “Good”, “Par-
tially Good”, “Bad”, and “Not Relevant”. We introduce the
“Not Relevant” label to distinguish between motion-critical
body parts (e.g., arms during throwing) and those that have
little involvement in the action (e.g., legs during a stand-
ing wave), while still marking any unnatural movement as
“Bad”. This separation helps evaluators provide targeted
feedback on the quality of key motion components.

Instead of showing oracle animations alongside LLM-
generated ones during evaluation, we separately include
them in the evaluation pool to avoid biasing annotators
toward a single reference motion while still establishing
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Figure 1: Pipeline of animation generation.

an upper performance bound. The inter-rater agreement
shows moderate levels (weighted kappa of 0.531 for over-
all scores, average pairwise agreement of 0.510-0.638 for
body parts), which is reasonable given the inherent vari-
ability in human motion.

4 Results and Analysis
We run our probing pipeline on selected LLMs, includ-

ing Claude 3.5 Sonnet, GPT-4o, GPT-4o-mini, GPT-3.5-
turbo and Llama-3.1-70B. As shown in Table 1, while
oracle animations achieve an averaged Overall Score of
4.57, all tested LLMs demonstrate substantial shortcom-
ings. The closest competitor, Claude 3.5 Sonnet, scores
1.28 points below the oracle. Body Part Position Accuracy
follows a similar pattern — the highest performing LLMs
Claude 3.5 Sonnet and GPT-4o only achieve 72.71% and
70.25% respectively. Given that humans are sensitive to
minor inaccuracies in body movements [12], these substan-
tial performance gaps suggest that LLMs generally struggle
with accurately recognizing body part positions.

Further comparison of body part motions reveals gener-
ally large performance gaps between LLM-generated and
oracle animations across all body parts, with varying de-
grees of deficit (Table 2, Figure 2). For body part labels
(Table 2), head and torso movements show smaller deficits,

Table 1: Averaged Overall Score and Body Part Position
Accuracy for each tested LLM.

LLM
Averaged

Overall Score
Body Part Position

Accuracy (%)

Claude 3.5 Sonnet 3.29 72.71
GPT-4o 3.13 70.25

GPT-4o-mini 2.87 67.82
GPT-3.5-turbo 2.14 66.90
Llama-3.1-70B 2.13 52.51

(Oracle Annotation) 4.57 100.00

while arm and leg motions display significant inaccura-
cies. Claude 3.5 Sonnet and GPT-4 lead in ”Good” and
”Partially Good” labels, while GPT-3.5-turbo and Llama-
3.1-70B dominate ”Bad” labels across all body parts. Body
Part Position Accuracy (Figure 2) reveals that lower body
parts achieve higher accuracy than their upper body coun-
terparts (e.g., Knee versus Elbow), and complex body parts
with more possible positions tend to have lower accuracy
than simpler body parts (e.g., Upper Arm versus Elbow).

Complex Motions. We analyze the correlation be-
tween Motion Complexity and Body Part Position Accu-
racy (Figure 3), and find that LLMs tend to have lower Body
Part Position Accuracy when predicting complex motions.

Complex Body Parts. Our analysis of the correla-
tion between position prediction accuracy and number of
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Table 2: Percentage (%) of body part labels (excluding “Not Relevant”) across evaluated LLMs. G, PG, and B respectively
stand for “Good”, “Partially Good”, and “Bad”. Highest percentages for each label are highlighted in pink (G), yellow
(PG), and gray (B).

LLM Head Torso Left Arm Right Arm Left Leg Right Leg
G PG B G PG B G PG B G PG B G PG B G PG B

Claude 3.5 Sonnet 74.1 22.2 3.7 72.6 17.7 9.7 25.0 53.9 21.1 29.3 53.3 17.3 38.6 31.8 29.5 31.7 29.3 39.0
GPT-4o 63.8 19.1 17.0 60.7 25.0 14.3 15.2 58.2 26.6 16.9 64.9 18.2 46.8 36.2 17.0 29.5 47.7 22.7

GPT-4o-mini 80.7 8.8 10.5 59.4 28.1 12.5 12.8 47.4 39.7 12.2 52.7 35.1 17.9 33.3 48.7 11.1 33.3 55.6
GPT-3.5-turbo 34.2 13.2 52.6 29.1 16.4 54.5 3.8 41.8 54.4 3.8 46.2 50.0 10.3 30.8 59.0 5.4 18.9 75.7
Llama-3.1-70B 44.0 32.0 24.0 34.8 34.8 30.4 6.9 41.4 51.7 9.4 38.8 51.8 15.5 7.0 77.5 5.9 5.9 88.2

(Average) 59.4 19.0 21.6 51.3 24.4 24.3 12.8 48.6 38.7 14.3 51.2 34.5 25.8 27.8 46.3 16.7 27.0 56.2
(Oracle) 89.6 10.4 0.0 80.3 18.2 1.5 74.0 19.5 6.5 76.3 19.7 4.0 76.6 14.9 8.5 76.1 13.0 10.9

Figure 2: Body Part Position Accuracy for each body part
and tested LLM. We average the accuracy for paired body
parts, e.g., “Elbow” for “LeftElbow” and “RightElbow”.

Figure 3: Motion-wise correlation between Motion Com-
plexity and the averaged Body Part Position Acccuracy.

Figure 4: Body-part-wise correlation between number of
possible positions and the averaged Body Part Position
Acccuracy.

possible positions for different body parts (Figure 4) re-
veals two key patterns. First, prediction accuracy tends
to inversely correlate with movement flexibility — body
parts with more possible positions (e.g., Upper Arm) show
lower accuracy compared to more constrained parts (e.g.,
Upper Leg). Second, comparison of the lower body perfor-
mance (green line) and upper body performance (red line)
demonstrates that LLMs achieve higher accuracy for lower
body parts versus their upper body counterparts.

5 Conclusion
In this work, we explore the human motion knowledge

embedded in LLMs, and verify it from the generated ani-
mations on the 3D human model SMPL. We find that LLMs
understand human motions in natural language space to a
certain degree, but struggle with accurate body part posi-
tions, especially complex motions and body parts.
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A Appendix

A.1 3D Human Model SMPL

SMPL [10] accurately generates the corresponding hu-
man body shape given specified pose parameters, i.e., joint
local rotations. We can manipulate SMPL by modifying
these parameters. For example, suppose that SMPL starts
from an initial state extending two arms to the sides (Figure
A1a), when we change the local rotation of the left elbow
joint m avg L Elbow from (0, 0, 0) to (0, 90, 0),
SMPL bends the left elbow at 90 degrees (Figure A1b).

(a) Initial (b) Left Elbow Bent

Figure A1: Overview of SMPL

A.2 Tested Motion Instructions

We collect 20 diverse motion instructions, covering dif-
ferent body parts in a balanced way. 5）To show the potential
of application to an open-world game, we devise each mo-
tion instruction to be a finite motion 6）related to a specific
practical scene, while avoiding commonly implemented
animations in games like walking. Each instruction speci-
fies necessary elements to avoid ambiguity, while we also
prevent it from being verbose. The tested motion instruc-
tions are shown in Table A1.

A.3 Impact of Querying Strategies

We investigate into the effect of different LLM-querying
strategies with GPT-4o. After changing high-level plan-
ning from generating piece-by-piece to in-one-go, the av-
eraged overall score drops by 0.34. For step-based iterative
refinement, we try selecting the body-part position from
predefined positions all at once or one-by-one, instead of

5） We manually label involved body parts in all motion instructions.
The involved body parts and their counts are: Head (15), Torso (16),
Arms (16 each), Legs (13 each).

6） For example, “walking” without constraints like “three steps” can
be infinite.

hierarchically. The performance drops respectively by 0.22
and 0.31.

Table A1: Tested Motion Instructions

Motion ID Motion Instruction
1 Slide the window open from the center to the sides

with both hands.
2 Water a 30-centimeter-tall plant using the watering

can in the right hand.
3 Look down to check the time of the watch on the

left wrist.
4 Pat a 30-centimeter-tall dog in front of you on the

head with the right hand.
5 Lean back fully and toss the ball into the air at a

45-degree angle using both hands.
6 Wipe down the 1-meter-high table in front of you

with a cloth in the left hand.
7 Hold the glass with the left hand and pour the juice

with the right hand.
8 Put a book on the 2-meter-high shelf with both

hands.
9 Lift a 20-centimeter-high box from the ground to

the table on your left with both hands.
10 Swing the golf club from right to left.
11 Close the 2-meter-high store shutter door from top

to bottom.
12 Squat to pick up litter by the right foot with the

right hand.
13 Lift the right shoe with both hands and put it on in

the air.
14 Perform a left-leg high side kick in Karate.
15 Kneel in a traditional Japanese bow.
16 Roll out a yoga mat on the ground.
17 Crouch to check a car tyre.
18 Arch the back 60 degrees to relieve tension in the

lower back muscles with two hands on the waist.
19 Bend to the left to reach for an item by the left foot

without moving or bending the left leg.
20 Walk through while ducking under a low-hanging

branch.
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