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Abstract
Evaluating an LLM’s robustness against numerical per-

turbation is a good way to know if the LLM actually per-
forms reasoning or just replicates patterns learned. We
propose a novel method to augment math word problems
(MWPs), producing numerical variations at a large scale
utilizing templates. We also propose an automated error
classification framework for scalable error analysis, distin-
guishing calculation errors from reasoning errors. Our ex-
periments using the methods show LLMs are weak against
numerical variations, suggesting they are not fully capable
of generating valid reasoning steps, often failing in arith-
metic operations.

1 Introduction
Recent LLMs [1, 2, 3, 4] have reported high accuracy

rates on mathematical reasoning benchmarks, including
GSM8K and MATH [5, 6]. However, a natural concern
is that the models just follow surface patterns observed in
their pretraining data rather than performing mathematical
reasoning [7, 8, 9, 10, 11].

Perturbing superficial elements like names of individu-
als or specific numbers does not change how the problem
should be solved. If an LLM can perform reasoning in
solving a math question, it should give correct answers
with similar reasoning steps for both the question and its
perturbed one. Recent studies [12, 13, 14, 15] evaluated
models’ robustness against the perturbations based on this
hypothesis.

These studies have the following limitations: a) the size
of the introduced variations was limited, b) they did not
discuss ranges of numerical values such as digit sizes, and
c) they did not distinguish reasoning errors and computa-
tional errors and could not explain the source of errors.

To address the limitations, we propose a scalable method
to augment a math word problem (MWP) dataset by chang-
ing numerical values based on template questions. To an-
alyze the impact of digit sizes on models’ mathematical
reasoning, we controlled the range of the replaced val-
ues and generated two distinct subsets, one with questions
containing a small number of digits (1-99) and one with
questions containing a large number of digits (1-9,999).
Using our method, we constructed a new dataset, GSM-
ALT, generating 2,000 variants for each original question
from GSM8K. Moreover, we propose a novel framework
for automated error analysis to identify whether a source of
incorrect prediction stems from errors in logical reasoning
or numerical calculation.

2 Related Work
Despite strong performance on math benchmarks, re-

searchers are questioning whether current benchmarks can
adequately evaluate reasoning abilities and language mod-
els demonstrate them.

Levy [7] expanded questions by adding non-essential
contents, showing that models’ performance decreases
when the number of tokens in a problem increases. Plan-
Bench [8, 9] is a benchmark to evaluate planning and rea-
soning capabilities. Their findings suggest that even state-
of-the-art models still struggle with this. Srivastava [12]
functionalized the math questions to create a dynamic
dataset, providing a robust evaluation metric against poten-
tial data leakage to models’ pretraining. Jiang [10] demon-
strated that the models’ high accuracy depends on a specific
token bias, and the models’ reasoning capability depends
on recognizing certain superficial patterns. Berglund [16]
and Guo [11] gave the answer to the questions and reversed
to infer one of the variables to construct reversal versions
of the original questions. They showed that the current
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models performed poorly on the reversal ones.

3 Method

3.1 Question Template Development

To develop a new dataset to assess the robustness of
numerical variations, we manually generate new variants
based on templates (Figure 1) composed from the original
questions of an existing dataset.

A question from an existing dataset (e.g., GSM8K) has
tuples of (question 𝑄, solution 𝑆). 𝑄 is a natural language
text describing a question to be solved. 𝑆 contains the
process 𝑃 and the final answer A. 𝑃 shows a gold process
for solving the question𝑄 step by step, including equations.
A stores a numerical value as a gold outcome from the 𝑃.
Given (𝑄, 𝑆), we first replace all the numerical values in
the 𝑄 with variables to get 𝑄𝑎𝑏𝑠 , which is the abstracted
𝑄. We apply the same operation to 𝑆 and get 𝑆𝑎𝑏𝑠 . We
keep variables consistent between 𝑄𝑎𝑏𝑠 and 𝑆𝑎𝑏𝑠 . 𝑆𝑎𝑏𝑠

contains 𝑃𝑎𝑏𝑠 and A𝑎𝑏𝑠 , representing the abstracted 𝑃 and
A. The 𝑄𝑎𝑏𝑠 and 𝑆𝑎𝑏𝑠 constitute a question template 𝑇 .

3.2 Variant Set Generation

Given a template 𝑇 of an original question, we generate
variants by replacing the variables in𝑇 with random values.
𝑡𝑖 denotes a variant generated from𝑇 , consisting of question
𝑄𝑖 , solution 𝑆𝑖 . 𝑆𝑖 contains the process 𝑃𝑖 and final answer
𝐴𝑖 . To ensure the variants are valid, the replaced values
need to satisfy some constraints (Figure 1). For example,
an answer should be positive and whole when it represents
the number of objects. Intermediate values appearing in
the process 𝑃𝑖 also need to satisfy the constraints as well.
We manually define constraints for each template. We only
accept a variant if it satisfies the constraints.

If models do only superficial pattern-based inference and
do not conduct reasoning, they perform poorly in solving
questions containing numbers that are rare in their training,
such as large digit numbers. To examine this hypothesis, for
each question template, we controlled the replaced values
within two different ranges and subsequently resulted in
two different variant sets: 1-99 (namely, the Easy variant
set) and 1-9,999 (namely, the Hard variant set).

4 Experimental Settings
We use GSM8K as the base dataset for our experiment.

GSM8K consists of MWPs for primary and secondary
school students and involves only the four basic arithmetic
operations. We randomly sampled 92 questions from the
GSM8K training set, from which we manually created 92
question templates1）. Given the templates, we generated
1,000 hard variants and 1,000 easy variants for each tem-
plate. As a result, our new dataset GSM-ALT consists
of the Hard and Easy variant set, each containing 92,000
variants.

We use accuracy as a primary evaluation metric. For the
original instances from the base dataset (original GSM8K),
we use a standard accuracy. For generated variants from
our dataset, we first calculate the accuracy for each template
variant set containing 1,000 variants, and then we average
them over all 92 templates.

The target models to be evaluated include generic mod-
els (Llama-3-8b-Instruct, Llama-3.1-8b-Instruct, Llama-
3.1-70b-Instruct, Mistral-7b-Instruct-v0.3) and math mod-
els that were fine-tuned on mathematical contents
(Deepseekmath-7b-rl, Wizardmath-7b-v1.1)

Regarding the generation settings, we used greedy search
to maximize the reproducibility and stability of results. To
minimize the influence of few-shot examples while ensur-
ing that the model can perform mathematical reasoning, we
adopted the zero-shot Chain-of-Thought (CoT) prompting
for solution generation and extracted the final answer in the
same way as Kojima [17] for generic models. As for math
models, we adopted the specifically designed prompts,
which are recommended on their Web pages. The prompts
used in the experiment can be found in Appendix C.

5 Results
Table 1 shows the results of each model’s accuracy eval-

uated on the original GSM8K and our GSM-ALT. The
lowest scores are highlighted in boldface. GSM-ALT re-
sults show scores from the Easy variant set and the Hard
variant set. All models showed a significant performance
drop in GSM-ALT from the base GSM8K. The drop was
observed in both the Easy and the Hard variant sets. Even
the two math-specialized models, especially Wizardmath-

1） We initially created 250 templates but the number of possible
variants is limited in some of the templates, so we removed those
templates to ensure there is no duplicated variant
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Fabian is shopping at a nearby supermarket. He wants to buy 5 kg of 
apples and 3 packs of sugar. One kilogram of apples costs $2, and one 
pack of sugar is $1 cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Final Answer 𝑨: 13

Process 𝑷: The apples cost Fabian 5 kg * $2/kg = $<<5*2=10>>10.
One pack of sugar costs $2 - $1 = $<<2-1=1>>1.
So, Fabian will pay $1/pack * 3 = $<<1*3=3>>3 for sugar.
In total, Fabian needs to pay $10 + $3 = $<<10+3=13>>13.

Original Template

Fabian is shopping at a nearby supermarket. He wants to buy x kg of 
apples and y packs of sugar. One kilogram of apples costs $z, and one 
pack of sugar is $p cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Process 𝑷𝒂𝒃𝒔: The apples cost Fabian x kg * $z/kg = $(x*z).
One pack of sugar costs $z - $p = $(z-p).
So, Fabian will pay $(z-p)/pack * y = $((z-p)*y) for sugar.
In total, Fabian needs to pay $(x*z) + $((z-p)*y) = $(x*z + (z-p)*y).

Final Answer 𝑨𝒂𝒃𝒔: x*z + (z-p)*y

z – p > 0Constraints: In this question template, we have the constraint that the 
price of one pack of sugar should be a positive number, thus

Solution 𝑺

Question 𝑸 Question 𝑸𝒂𝒃𝒔

Solution 𝑺𝒂𝒃𝒔

Figure 1 Example of Question Template Development

Table 1 Accuracy scores

Models
GSM8K GSM-ALT

Base Easy Hard

Llama-3-8b-Instruct 0.840 0.507 0.156
Llama-3.1-8b-Instruct 0.880 0.604 0.193
Llama-3.1-70b-Instruct 0.978 0.819 0.355
Mistral-7b-Instruct-v0.3 0.587 0.238 0.104
Deepseek-math-7b-rl 0.957 0.706 0.307
Wizardmath-7b-v1.1 0.891 0.489 0.223

7b-v1.1, showed lower scores by more than 0.4 on the Easy
and more than 0.6 on the Hard.

This result shows that numerical variations always de-
grade performance in both the Hard and the Easy variant
sets. The fact that the Easy variant set degrades the per-
formance indicates that the models are weak even against
the numbers whose range is similar to the base GSM8K.
Moreover, we found clearer score drops from the GSM8K
scores in the Hard variant set than in the Easy variant
set, suggesting the computational difficulty affects models’
reasoning.

6 Error Analysis on Solutions
To identify the source of errors, we classify errors into

two types: calculation errors and reasoning errors. If an
incorrect solution only contains failures in calculations, we
call it a calculation error. If an incorrect solution contains
incorrect reasoning steps, we label it a reasoning error
regardless of its incorrect calculations.

As GSM-ALT will be larger than its original dataset,
manually checking each generated solution is not practical,

and thus, we propose a novel framework that automatically
classifies errors into calculation or reasoning errors.

6.1 Error Analysis Framework

To classify errors, we first transform a predicted solu-
tion 𝑆𝑖 into its abstracted form 𝑆𝑖𝑎𝑏𝑠 , which contains the
abstracted 𝑃̂𝑖

𝑎𝑏𝑠 and 𝐴̂𝑖
𝑎𝑏𝑠 . If 𝑆𝑖 is incorrect because of

a reasoning error, its transformed 𝑃̂𝑖
𝑎𝑏𝑠 should contain a

reasoning error resulting in incorrect 𝐴̂𝑖
𝑎𝑏𝑠 . If 𝑆𝑖 contains

a calculation error, but its reasoning steps are correct, 𝑃̂𝑖
𝑎𝑏𝑠

and 𝐴̂𝑖
𝑎𝑏𝑠 should be correct. Thus, checking if 𝐴̂𝑖

𝑎𝑏𝑠 is
correct should give a proxy to determine the sources of
errors.

In our framework, an LLM transforms a 𝑆𝑖 into the 𝑆𝑖𝑎𝑏𝑠 ,
as shown in Figure 2. Then, we can automatically check if
𝐴̂𝑖
𝑎𝑏𝑠 is correct by comparing it with its gold answer 𝐴𝑎𝑏𝑠

from our templates. An input to the LLM is a model’s pre-
dicted solution 𝑆𝑖 , its question 𝑄𝑖 , and its abstracted ques-
tion 𝑄𝑎𝑏𝑠 available from our templates. We auxiliaryly
input the 𝑄𝑎𝑏𝑠 guiding the LLM to use variables consis-
tently, inspired by Gaur [18]. An output from the LLM is
an abstracted solution 𝑆𝑖𝑎𝑏𝑠 . We show our prompt for this
framework in Appendix D. We employ Qwen2-math-72b-
instruct [19] for this transformation. We manually checked
the outputs and confirmed the LLM could obtain the ab-
stracted solutions at 90% success rate on average in our
preliminary experiment.

6.2 Results of Error Analysis

Table 2 shows the results of error classification by our
framework. Values in the table indicate the proportion of
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Template

Buy X pens of $Y.
How much in total?

Question Solution
Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃!"#

Answer 𝐴!"#

Buy 4 pens of $3.
How much in total?

Question

Variant LLM

Predicted solution

Solution
Each pen costs $3.
So, total expense is 
$3*4=$12.

12

Process 𝑃#$
Answer 𝐴$$

Abstracted solution

Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃#!"#$

Answer 𝐴$!"#$

Match? Reasoning
error

Calculation
error

Yes
No

𝑆"! 𝑆""#$!

𝑄! 𝑄"#$
𝑆"#$

Figure 2 Error classification framework

Table 2 Error rate per error type and variant set
Base set Easy variant set Hard variant set

calculation err. reasoning err. calculation err. reasoning err. calculation err. reasoning err.

Llama-3-8b-Instruct .033 (20.0%) .130 (80.0%) .279 (56.6%) .214 (43.4%) .573 (67.9%) .271 (32.1%)
Llama-3.1-8b-Instruct .033 (27.3%) .087 (72.7%) .252 (63.6%) .144 (36.4%) .601 (74.5%) .206 (25.5%)
Llama-3.1-70b-Instruct .000 (00.0%) .022 (100.0%) .125 (69.1%) .056 (30.9%) .516 (80.0%) .129 (20.0%)
Mistral-7b-Instruct-v0.3 .098 (23.7%) .315 (76.3%) .385 (50.5%) .377 (49.5%) .477 (53.2%) .419 (46.8%)
Deepseek-math-7b-rl .011 (25.0%) .033 (75.0%) .217 (73.8%) .077 (26.2%) .529 (76.4%) .163 (23.6%)
Wizardmath-7b-v1.1 .043 (40.0%) .065 (60.0%) .383 (75.0%) .128 (25.0%) .586 (75.4%) .191 (24.6%)

Macro avg. .036 (24.8%) .109 (75.2%) .274 (62.3%) .166 (37.7%) .547 (70.4%) .230 (29.6%)

solutions classified as calculation errors or reasoning errors
out of all solutions predicted by the models. Values in
parentheses indicate the proportion of solutions classified
as calculation errors or reasoning errors out of incorrect
solutions.

In the Base set, the majority of incorrect solutions were
due to reasoning errors, while they changed to calculation
errors in the Easy and Hard variant sets. This trend was
especially evident in the Hard variant set, and more than
70% were because of calculation errors. This result sug-
gests that the limited capability of arithmetic calculation
is indeed a major issue of LLMs in solving mathematical
problems rather than the reasoning capability of generat-
ing a valid process of solving steps especially when the
numerical values in the questions are large.

Looking at the reasoning errors, all the models got more
errors in both the Easy and Hard variant sets than the base
set. The same as calculation errors, the trend was evident in
the Hard variant set. This result suggests that variants also
introduce harmful changes in reasoning steps in addition to
complex calculations, which result in incorrect solutions.
Moreover, variants with larger digit sizes are more likely
to introduce errors in reasoning steps.

7 Conclusion
We proposed a novel method to augment MWP datasets,

which produces a dataset for evaluating LLMs’ robustness
against numerical variations at a reliable scale. Using
our templates, anyone can easily generate thousands of
variants from one original question in the GSM8K, which
was not possible with any preceding proposals. We also
proposed an automated error classification framework for
scalable error analysis, distinguishing calculation errors
from reasoning errors.

Using the methods, we empirically showed that the six
LLMs we tested were weak against numerical variations,
especially when the numerical values were large. This
finding is consistent with previous studies [12, 13, 14, 15],
but we confirm it with more variants. Our error analysis
uniquely identified that calculation errors contributed to
a substantial proportion of incorrect solutions, suggest-
ing LLMs’ incapability of arithmetic operations is the
main source of limited capabilities in math word problems.
Moreover, we found that LLMs still fail in their reasoning
steps, especially when they encounter variants with larger
numerical values. Given our findings, it is still hard to say
that current LLMs are robust against numerical variations.
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A Necessity of Manual Operations
in Creating Question Templates
Although we have considered using regular expressions and

rule-based approaches to automate template creation, they have
the following problems: a) Not all numerical values in the original
instance are “symbolizable.” Some numbers in the instance are
specific, and altering them would make the instance ill-defined.
b) As shown in Figure 1, when generating the template, it is
necessary to keep the usage of variable consistent between 𝑄𝑎𝑏𝑠

and 𝑆𝑎𝑏𝑠 . It is hard to catch the relationship with rule-based
replacement and requires human insight. Therefore, we created
the question templates manually.

B Large Language Models
We list all of the LLMs used in our experiments.
Generic LLMs
• Llama-3-8b-Instruct (https://huggingface.co/
meta-llama/Meta-Llama-3-8B-Instruct)

• Llama-3.1-8b-Instruct （https://huggingface.co/

meta-llama/Llama-3.1-8B-Instruct）
• Llama-3.1-70b-Instruct （https://huggingface.co/

meta-llama/Llama-3.1-70B-Instruct）
• Mistral-7b-Instruct-v0.3 （https://huggingface.co/

mistralai/Mistral-7B-Instruct-v0.3)
LLMs for mathematical domain
• Deepseekmath-7b-rl （https://huggingface.co/

deepseek-ai/deepseek-math-7b-rl）
• Wizardmath-7b-v1.1 （https://huggingface.co/

WizardLMTeam/WizardMath-7B-V1.1)
C Prompts Design for Main Exper-

iments
For the generic LLMs, we developed prompts for solution gen-

eration (Figure 3) and answer extraction (Figre 4) based on the
prompts used in [17].

Generation Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.

Figure 3 The prompt for generic models (generating solutions)

Answer Extraction Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.
ASSISTANT: {model’s completion}

USER: Therefore, what is the final answer? Only write the final 
answer without any texts.

Figure 4 The prompt for generic models (extracting final an-
swer)

For Deepseekmath-7b-rl and Wizardmath-7b-v1.1, we em-
ployed prompts based on templates suggested on their web pages.
Figure 5 and 6 show them. In extracting answers from solutions
generated by the two math models, we could simply use regular
expressions since they always generate solutions in a fixed format.

Generation Prompt – Deepseekmath-7b-rl

USER: {question} 
Please reason step by step and put your final answer within 
\boxed{}.

Figure 5 The prompt for Deepseekmath-7b-rl (genearting so-
lutions)

Generation Prompt – Wizardmath-7b-v1.1

USER: Below is an instruction that describes a task. Write a 
response that appropriately completes the request.
### Instruction:
{question}
### Response: 
Let's think step by step.

Figure 6 The prompt for Wizardmath-7b-v1.1 (generating so-
lutions)

D Prompt Design for Error Analysis
Framework
Figure 7 presents the prompt used to transform a predicted

solution into the abstracted form.
Transformation Prompt

SYSTEM: Given the numeric version of a math question and its solution as 
references, you are a helpful assistant designed to copy the numeric solution to get 
a solution to the symbolic version of that question.
Instructions:
- Symbolic solution should strictly copy the numeric solution no matter whether it 
is correct or not.
- After completion of the solution, output the final answer with "###". The final 
answer should be a sole mathematical expression represented by variables appear 
in the symbolic question.
- Mathematical expression in the symbolic solution should not be represented in 
the format of LaTeX.

{few-shot examples}

USER: {target solution}

Figure 7 The prompt for solution transformation
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