
Cosine Similarity as Logits?: Few-shot Knowledge Graph
Completion with Embedding Vectors of a Generative PLM

and its Application in Knowledge Probing

Tomoyuki Jinno1　Kazuki Hayashi1　Yusuke Sakai1　Hidetaka Kamigaito1　Taro Watanabe1

1Nara Institute of Science and Technology
jinno.tomoyuki.jx3@naist.ac.jp

{hayashi.kazuki.hl4, sakai.yusuke.sr9, kamigaito.h, taro}@is.naist.jp

Abstract
The Knowledge graph completion (KGC) task aims to

predict missing relations in knowledge graphs (KGs). Re-
cently, text-based KGC approaches have gained attention
but they present challenges: encoder-based methods re-
quire fine-tuning making it non-ideal when an ideal KG for
training cannot be obtained, such as when KG is sparse or
predicting new relation-types. Meanwhile, decoder-based
methods make prediction by generating tokens, where en-
tity disambiguation becomes a challenge. KGC is also used
in knowledge proving, which aims to evaluate the knowl-
edge retrieval capability of pre-trained language models
(PLMs), but existing probes for generative PLM capable of
ranking all multi-token and single-token entities are com-
putationally inefficient. To address these problems, we pro-
pose DEER, an encoder-based few-shot KGC, leveraging a
generative PLM that achieves a linear inference time com-
plexity. Our experiment shows that DEER outperforms a
fine-tuned KGC model in a relationally inductive setting
and aligns with an existing knowledge-probing method,
positioning it as a possible alternative.

1 Introduction
The knowledge graph completion (KGC) task aims

to precit missing relations in existing knowledge graphs
(KGs). A relation is represented as a triplet consisting
of (head-entity, relation-type, tail-entity), hence the aim
of KGC is to predict the tail-entity given a partially-filled
triplet, (head-entity, relation-type, ?). Text-based KGC
methods have recently gained popularity which can be cate-
gorized into encoder-based and decoder-based approaches.

Encoder-based approach, such as SimKGC [1], refor-

mulates the KGC task as a document ranking task, treating
the partially-filled triplet as a query and tail-entity as an
answer. An encoder model is used to encode the query and
tail-entity candidates as a vector which are then re-ranked
by their similarity. In contrast, decoder-based approach
treats the task as a text-generation task, generating name of
tail-entities given a partially filled triplet using a generative
pre-trained language model (PLM) [2, 3].

Encoder models often have fewer parameters than de-
coder models. This limits the parametric knowledge and
inference performance of encoder-based approach [4, 5],
necessitating fine-tuning on a KG, rather than a zero-shot
or few-shot inference. This makes the approach non-ideal
when a suitable KG for training is difficult to acquire, such
as when the KG is sparse, evolves over time or when pre-
dicting new relation-types [6].

In contrast, predicting large number of tail-entity can-
didates using decoder-based approach is often inefficient.
Hence, they typically predict only the most likely or top-
n tail entities. In addition, linking the generated output
to the correct entity, such as disambiguating identically
named entities, presents a challenge [7].

KGC is also employed for knowledge probing, which
aims to assess the factual knowledge retrieval capabilities
of PLMs. LAMA [8] was the first of such method, but it
fails to probe multi-token entities. Rank based knowledge
probe for generative PLMs compatible with multi-token
entities remain under explored [9] with BEAR [10] being
the only method to our knowledge. However, it infers all
combinations of queries and answers, making it computa-
tionally expensive, limiting KG size used for probing.

In this paper, we propose DEcoder Embedding-based
Relational probe (DEER), a few-shot KGC model de-

― 4238 ―

言語処理学会 第31回年次大会 発表論文集（2025年3月）

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Table 1 Comparison of key features with text-based KGC.
Encoder-Based Decoder-Based Ours
Fine-Tuned Few-Shot Few-Shot
Vector-Based Token-Based Vector-Based
Fully Ranked Top-n Fully Ranked
Sub-Billion Params Super-Billion Super-Billion

signed to overcome the limitations of both encoder-based
and decoder-based methods, while retaining their advan-
tages. DEER enables fully ranked, multi-entity-compatible
knowledge probing and KGC under linear time complexity.

Table 1 compares the key characteristics of different
KGC methods. As illustrated in Figure 1, our model lever-
ages a generative language model, but differs from typical
decoder-based methods by inferring using vector represen-
tations of entities, making it an encoder-based approach.
These vectors are obtained from a generative PLM with the
Prompt-Based Method with Explicit One Word Limitation
(PromptEOL) [11], which acquires sentence embeddings
from a generative PLM without additional training needs.

This work addresses the following questions:

1. How does DEER perform in relationally inductive
settings?

2. Does it correlate with the prediction of LAMA?

Through answering these questions, we aim to demonstrate
the generalization capability of our method in relationally
sparse KGs and validate the use of DEER for knowledge
probing by showing its agreement with LAMA.

2 Background
PromptEOL Embedding PromptEOL uses a gener-

ative PLM for sentence embedding. Given a sequence of
input tokens 𝑥1, 𝑥2, . . . , 𝑥𝑛, the last hidden state, h𝑛, corre-
sponding to the token 𝑥𝑛, is used as the sentence embedding
vector. More specifically, h𝑛 is the vector typically used
for next token prediction by applying a final dense layer
followed by a softmax function. This process is expressed
as z𝑛 = 𝑊h𝑛 + b, where 𝑥𝑛+1 = arg max(softmax(z𝑛)).
To embed a sentence, it uses the following prompt tem-
plate: This sentence: ”S” means in one word ”, where 𝑆

is replaced with the target sentence.
Knowledge Probing LAMA was the first knowledge

probe that evaluated PLMs on the KGC task. It first re-
stricts tail-entity candidates to single-token entities and by
prompting the model with cloze-style questions, ranks the

Outputs

......

...

Bird

Fish

Fish

Mammle

Tail

Entities

Tail-Entity

Tail-Entity

Encoding

Tail-Entity Encodings

Head-Entity, Relation Encoding

Tail-Entity

Scores

Partially Filled

Triplet

(Deer, is, ?)

Prompt

EOL

Prompt

EOL

Prompt

EOL

Prompt

EOL

0.8

0.3

0.1

Output

Input

DEER (KGC)

Last Hidden
Layer

Fish means in one word:
Prompt

Template

Causal LLM

means in one word:Next Token Logits

Language Model Head

Inputs

Input

PromptEOL

 Encoder

Figure 1 An illustration of the DEER architecture.

tail-entities by the log likelihood of the token correspond-
ing to their name, at the masked position in the prompt.
The mean precision at rank 𝑘 (P@k), also known as Hit@k
was used to score the models. Since only a single masked
token is used, it cannot handle multi-token entities.

KAMEL [12] was introduced to address the problem,
which probes multi-token entities by autoregressively gen-
erating the tail-entity names. It uses exact string match on
the output for evaluation, which limits evaluation metrics to
non-rank based scores (P@1). BEAR was later proposed
to support P@k scores while also handling multi-token
entities. However, BEAR is computationally expensive,
requiring PLMs to process O(𝑞𝑎) inputs, where 𝑞 is the
number of partially filled triplets and 𝑎 is the number of
tail-entity candidates. Since all methods above are token
based, they also cannot disambiguate identically named tail
entities. In contrast, our approach only requires O(𝑞 + 𝑎),
whilst also supporting tail-entity disambiguation.

Knowledge Graph Completion A KG is defined as
a set of triplets T ∋ (ℎ, 𝑟, 𝑡), where ℎ represents the head
entity, 𝑟 the relation type and 𝑡 the tail entity, with ℎ, 𝑡 ∈ E
and 𝑟 ∈ R, where E is the set of entities and R the set
of relation types. Therefore, KGC aims to learn a correct
map, 𝑓 : (ℎ, 𝑟, ?) → 𝑡. KGC models are trained on Ttrain

and tested against Ttest, ensuring Ttrain ∩ Ttest = ∅. We

― 4239 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Template 1 Tail Entity Encoding Template where 𝑒name

and 𝑒description are replaced by their textual representations.
1: 𝑒name - 𝑒description

2: This sentence: ”{word}” means in one word: ”{one
word}”

3: This sentence: ”𝑒name” means in one word: ”

further define subsets of KGC as follows.
Inductive KGC Setting In this setting, all entities

found in the test set are never found in the training set,
thereby Etest ∩ Etrain = ∅ and Rtest ⊆ Rtrain.

Relationally Inductive KGC Setting In this setting,
all the relation types found in the test set are never found in
the training set, thereby Rtrain ∩Rtest = ∅ and Etest ⊆ Etrain.

Encoder-Based KGC Model These models gener-
ate embedding vectors for both the partial triplet and the tail
entities. They define a similarity measure 𝜙 and learns two
functions: 𝑓hr : (ℎ, 𝑟, ?) → ehr and 𝑓t : 𝑡 → et, such that
tail entities, when sorted by 𝜙(ehr, et) preserve the ranking
of 𝑡 as induced by 𝑝(𝑡 | (ℎ, 𝑟, ?)), allowing for equivalent
sorting of 𝑡 by 𝜙(ehr, e𝑡) or 𝑝(𝑡 | (ℎ, 𝑟, ?)).

3 Model Architecture
DEER is an encoder-based KGC model capable of pre-

dicting missing relations in a transductive, inductive, or
relationally inductive setting. It creates both eℎ𝑟 and e𝑡
from a generative PLM using the PromptEOL method and
employs cosine similarity as 𝜙. The method requires two
functions mapping entities to their textual name and textual
description 𝑓name : 𝑒 → 𝑒name, 𝑓description : 𝑒 → 𝑒description

and another, mapping relations to their names, 𝑓relation :
𝑟 → 𝑟name. Following paragraphs describe the prompt
templates used to acquire the embeddings, eℎ𝑟 and e𝑡 .

Tail Entities Encoding Template Template 1 is
used to encode the tail entities. This template is similar
to the original PromptEOL template [11], but line 2 re-
places the few-shot examples to prevent introducing bias,
and adds line 1 to disambiguate identically named entities.

Head-Entity, Relation Encoding Template Here
we propose two separate templates for generating ehr: first,
a probing template designed to examine the knowledge re-
call ability of PLMs and second, a KGC template designed
to maximize the KGC performance. Both templates are
prefixed by an 8 shot example, 𝑆, generated from randomly
sampled triplets from the training set.

Template 2 Probing Template used to generate 𝑒hr .
1: ℎname - ℎdescription

2: (ℎname, 𝑟name,

Probing Template For knowledge probing, the fol-
lowing template is used―(ℎname, 𝑟name―where ℎname is re-
placed by the head entity’s name and 𝑟name by the relation’s
name. Note that no head-entity descriptions are provided
to prevent the model from inferring relations of unmemo-
rized entities. The example, 𝑆, is generated by concatenat-
ing the sampled triplets, each on a new line. Below is an
example of a complete template, when ℎname=”deer” and
𝑟name=”hypernym”:

(dress up, verb group, trick up)
...

(disfavour, hypernym, single out)
(deer, hypernym,

KGC Template When completing a KG, we addi-
tionally provide a head-entity description to enhance per-
formance. This is achieved using Template 2, which is
prefixed with an 8-shot example generated by the following
template: ℎ𝑖,name − ℎ𝑖,description\n(ℎ𝑖,name, 𝑟𝑖,name, 𝑡𝑖,name).

4 Experiments and Results
In this work, we conduct two experiments. First, we per-

form a relationally inductive KGC experiment to demon-
strate the advantage of our method in making out-of-
distribution predictions. Second, we conduct the LAMA
agreement experiment to investigate the degree of agree-
ment with LAMA. WN18RR dataset [13] was used in both
experiments and textual descriptions of entities provided by
KG-BERT [14] were used as 𝑓description. As in the original
PromptEOL work, the OPT 1）[15] was used as a PLM.

4.1 Experimental Setups

Relationally Inductive KGC Experiment A rela-
tionally inductive dataset was constructed using a trans-
ductive split of WN18RR. Triplets containing a specific
relation type were removed from the training set and sub-
sequently combined to form the test set. To represent a
baseline performance of a fine-tuned encoder-base model,
the SimKGC model was trained on the dataset with hy-
perparameters identical to the original work. The dataset
was then used to evaluate the DEER performance with the

1） https://huggingface.co/facebook/opt-6.7b

― 4240 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Table 2 Relational Inductive Setting (Excluding ’Also See’).
MR: mean rank, MRR: mean reciprocal rank, Iml: instruction–
tuned models. # of entities: 40,943, # of test triplets: 1,299.

Model Name Hit@1 Hit@3 Hit@10 MR MRR
SimKGC 0.27 1.07 3.19 11623 0.0136

Ours-125M 0.08 0.31 0.69 12422 0.0036
Ours-350M 0.15 0.23 1.23 12919 0.0052
Ours-1.3B 0.54 6.16 17.71 1785 0.0597

Ours-iml-1.3B 0.62 7.54 21.32 1438 0.0718
Ours-6.7B 1.53 8.31 20.55 1251 0.0787

KGC template used for this experiment.
LAMA Agreement Experiment The test split of the

transductive WN18RR dataset was adapted for LAMA by
removing all triplets with multi-token tail entities. Both
LAMA and DEER scored all single-token entities, with
LAMA assigning the same scores to identically named en-
tities due to disambiguation issues. The probing template
was used instead of a cloze-style QA to maintain consis-
tent bias with our method’s bias. As shown in A.1, the
predicted scores were ranked in descending order, and the
tail entities’ ranks were recorded. Pearson correlation be-
tween the rankings was computed across various model
sizes, with a logarithmic scale applied to account for the
reduced importance of rank differences at higher ranks.

4.2 Main Results

Relationally Inductive KGC Experiment Table 2
presents the results of the relationally inductive experi-
ment, where the relation type “Also See” was removed
from the train dataset. SimKGC, based on the 108M pa-
rameter BERT-base model, outperformed our models of
comparative parameter size, DEER-125M, across all met-
rics. However, our models with super-billon parameter
size outperformed SimKGC, despite not being fine-tuned,
achieving +467% relative (𝛿) and +1.26% absolute (Δ) im-
provement for Hit@1, 𝛿 = +677%, Δ = +7.27% for Hit@3
and 𝛿 = +568% with Δ = +18% for Hit@10.

LAMA Agreement Experiment Table 3 presents
the result of the LAMA agreement experiment. Log(rank)
demonstrated stronger correlation than linear ranking,
likely due to the increased sensitivity of rank difference at
higher scores. Sub-billion models showed less correlation
than super-billion models, with 𝑟 = 0.373 for OPT-125M
and 𝑟 = 0.612 for OPT-350M, possibly due to the limi-
tations of smaller models in summarizing entities with a
single word as instructed. However, as shown in Figure

Figure 2 A scatter plot indicating a correlation between
log(tail-entity rank) of LAMA and DEER.

Table 3 Pearson’s correlation between DEER and LAMA Pre-
dictions of target tail-entity ranks and log(target tail-entity rank).
of entities: 4,948, # of test triplets: 16,521.

Rank Log(Rank)
PLM Name 𝑟 p-value 𝑟 p-value
OPT-125M 0.466 1.75 × 10−33 0.373 3.82 × 10−21

OPT-350M 0.387 8.86 × 10−23 0.612 1.30 × 10−62

OPT-1.3B 0.472 1.87 × 10−34 0.726 1.25 × 10−98

OPT-iml-1.3B 0.551 1.268 × 10−48 0.767 2.46 × 10−116

OPT-6.7B 0.596 1.59×10−58 0.806 1.6×10−137

OPT-30B 0.487 7.56×10−37 0.763 9.63×10−115

OPT-iml-30B 0.462 6.75×10−33 0.710 1.61 × 10−92

2, super-billion models exhibited high Log(rank) correla-
tion with 𝑟 = [0.710, 0.806], indicating a strong alignment
between our method and LAMA.

5 Conclusion
We introduced DEER, a novel few-shot encoder-based

KGC model that leverages a generative PLM. This ap-
proach retains the strengths of generative PLMs, such as
few-shot capability and extensive parametric knowledge
while addressing their drawbacks, including the need for
entity linking, entity disambiguation, and limited ranking
ability. Furthermore, it overcomes BEAR’s limitation by
enabling linear inference time complexity.

Our experiments show that DEER outperforms a fine-
tuned SimKGC model in relationally inductive settings and
aligns closely with LAMA. Its few-shot capabilities make
it effective for completing KGs where obtaining an ideal
training dataset is difficult. Moreover, its alignment with
LAMA offers a promising avenue for future knowledge
probing research, potentially offering deeper insights into
knowledge recall abilities of generative PLMs.

― 4241 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

References
[1] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu.

SimKGC: Simple contrastive knowledge graph completion
with pre-trained language models. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio, editors, Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 4281–4294, Dublin, Ireland, May 2022. Asso-
ciation for Computational Linguistics.

[2] Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui
Chen, Feiyu Xiong, Mosha Chen, and Huajun Chen. From
discrimination to generation: Knowledge graph comple-
tion with generative transformer. In Companion Pro-
ceedings of the Web Conference 2022, WWW ’22,
p. 162–165, New York, NY, USA, 2022. Association for
Computing Machinery.

[3] Xin Xie, Zhoubo Li, Xiaohan Wang, ZeKun Xi, and
Ningyu Zhang. LambdaKG: A library for pre-trained lan-
guage model-based knowledge graph embeddings. In Sri-
parna Saha and Herry Sujaini, editors, Proceedings of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Com-
putational Linguistics: System Demonstrations, pp.
25–33, Bali, Indonesia, November 2023. Association for
Computational Linguistics.

[4] Adam Roberts, Colin Raffel, and Noam Shazeer. How
much knowledge can you pack into the parameters of a
language model? In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 5418–5426, Online,
November 2020. Association for Computational Linguis-
tics.

[5] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models, 2020.

[6] Dora Jambor, Komal Teru, Joelle Pineau, and William L.
Hamilton. Exploring the limits of few-shot link prediction
in knowledge graphs. In Paola Merlo, Jorg Tiedemann, and
Reut Tsarfaty, editors, Proceedings of the 16th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume,
pp. 2816–2822, Online, April 2021. Association for Com-
putational Linguistics.

[7] Xin Zhao, Naoki Yoshinaga, and Daisuke Oba. What
matters in memorizing and recalling facts? multifaceted
benchmarks for knowledge probing in language models.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
editors, Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pp. 13186–13214,
Miami, Florida, USA, November 2024. Association for
Computational Linguistics.

[8] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick
Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller.
Language models as knowledge bases? In Kentaro

Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2463–
2473, Hong Kong, China, November 2019. Association for
Computational Linguistics.

[9] Paul Youssef, Osman Koraş, Meijie Li, Jörg Schlötterer,
and Christin Seifert. Give me the facts! a survey on fac-
tual knowledge probing in pre-trained language models.
In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 15588–15605, Singapore,
December 2023. Association for Computational Linguis-
tics.

[10] Jacek Wiland, Max Ploner, and Alan Akbik. BEAR: A
unified framework for evaluating relational knowledge in
causal and masked language models. In Kevin Duh, Helena
Gomez, and Steven Bethard, editors, Findings of the
Association for Computational Linguistics: NAACL
2024, pp. 2393–2411, Mexico City, Mexico, June 2024.
Association for Computational Linguistics.

[11] Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. Scaling sentence embeddings
with large language models. In Yaser Al-Onaizan, Mo-
hit Bansal, and Yun-Nung Chen, editors, Findings of the
Association for Computational Linguistics: EMNLP
2024, pp. 3182–3196, Miami, Florida, USA, November
2024. Association for Computational Linguistics.

[12] Jan-Christoph Kalo and Leandra Fichtel. Kamel: Knowl-
edge analysis with multitoken entities in language models.
In AKBC, 2022.

[13] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and
Sebastian Riedel. Convolutional 2d knowledge graph
embeddings. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intel-
ligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[14] Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert:
Bert for knowledge graph completion, 2019.

[15] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language
models, 2022.

[16] Komal Teru, Etienne Denis, and Will Hamilton. Inductive
relation prediction by subgraph reasoning. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, Vol.
119 of Proceedings of Machine Learning Research,
pp. 9448–9457. PMLR, 13–18 Jul 2020.

― 4242 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

A Appendix

A.1 LAMA Agreement Experiment

......

Bird Bird

Fish Fish

Mammle
Mammle

Tail

Entities

Tail

Entities

Head-Entity, Relation Encoding

Partially Filled Triplet

True Tail True Tail

Ranks of True Tail

Decoder Projection

LayerProbing

Template

(Deer, is, ?)

Prompt

EOL

0.7

0.8

0.1 0.2

0.3

0.9

Our Scores

Research Question

DEER

Language Model

Head

Do the Ranks Agree?
LAMA

Next Token

Logits

Cosine

Similarity

2nd 1st

2nd

nth

1st

nth

Tail Entity

Encodings

LAMA Scores

Input

Figure 3 A diagram illustrating data-flow in the LAMA Agree-
ment Experiment. Note, an identical vector ehr, is used for the
cosine similarity in our method and token prediction in LAMA.

Figure 4 A scatter plot showing correlation between tail-entity
tank of DEER and LAMA.

The logit value of true-tail entity in LAMA and the
Softmaxed Cosine Similarity value of the entity in DEER
was additionally compared. Table 5 shows the Pearson
correlation between the two values, and Figure 5 shows a
scatter plot between the values with OPT-6.7B.

Table 4 Correlation of LAMA’s logits and softmaxed cos sim.
Model Pearson Correlation p-value

OPT-125M 0.405 6.66 × 10−25

OPT-350M 0.498 1.33 × 10−38

OPT-1.3B 0.724 5.48 × 10−98

OPT-iml-1.3B 0.795 5.00 × 10−131

OPT-6.7B 0.816 2.34 × 10−143

OPT-30B 0.717 3.31 × 10−95

OPT-iml-30B 0.672 1.468 × 10−79

Figure 5 A scatter plot comparing softmaxed cosine similarity
of ehr, et in DEER and logits of tail-entity token in LAMA,
indicating a correlation between the two values.

Table 5 A table illustrating the difference between Hit@K and
MRR between LAMA and our method across different parameters
size. The setup is identical to the LAMA agreement experiment.

Hit@1 Hit@10 Hit@500 MRR
LAMA-125M 0.168 3.86 35.1 0.0154
Ours-125M 0.168 2.68 39.4 0.0124

Relative Error, % 0.0 31 12 19
LAMA-350M 3.02 12.4 38.4 0.0573
Ours-350M 0.336 2.85 36.2 0.0157

Relative Error, % 89 77 5.7 73
LAMA-1.3B 4.19 21.8 56.4 0.0997
Ours-1.3B 2.52 15.9 52.2 0.0699

Relative Error, % 40 27 7.4 30
LAMA-iml-1.3B 5.03 24.5 62.9 0.112
Ours-iml-1.3B 9.23 33.9 74.7 0.176

Relative Error, % 83 38 19 57
LAMA-6.8B 7.38 33.2 55.5 0.156
Ours-6.8B 8.39 33.9 53.0 0.165

Relative Error, % 14 2.0 3.6 5.2
LAMA-30B 5.87 32.6 77.7 0.143
Ours-30B 10.2 39.8 78.4 0.199

Relative Error, % 73 22 0.90 39
LAMA-iml-30B 8.05 35.4 78.9 0.163
Ours-iml-30B 9.40 32.9 73.2 0.175

Relative Error, % 17 10 7.2 7.4

A.2 Inductive KGC Experiment

Table 6 Performance of DEER on inductive split of WN18RR
[16]. KGC Template was used.

Hit@1 Hit@10 Hit@1000 MRR
OPT-125M 0.6 ± 0.7 6 ± 6 40 ± 10 0.02 ± 0.02
OPT-350M 0.6 ± 0.8 5 ± 6 30 ± 10 0.02 ± 0.02
OPT-1.3B 2.3 ± 0.9 25 ± 7 70 ± 10 0.10 ± 0.03

OPT-iml-1.3B 2.3 ± 0.8 27 ± 9 77 ± 9 0.10 ± 0.03
OPT-6.7B 1.6 ± 0.7 28 ± 3 75 ± 6 0.10 ± 0.01
OPT-30B 1.7 ± 0.3 35 ± 3 82 ± 3 0.12 ± 0.01

OPT-iml-30B 2.9 ± 0.8 26 ± 5 73 ± 3 0.10 ± 0.02

― 4243 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

