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Abstract

In this work, we dissect mixed fine-tuning for adapt-
ing multilingual models to English-to-Japanese translation.
We explore different sampling regimes across specialized
and generic translations. Our findings indicate that over-
sampling the in-domain data leads to notable improvements
in domain-specific performance, yet at the cost of severe
degradation in generalization to unseen languages, per-
forming even worse than basic fine-tuning with no generic
data. In contrast, undersampling the generic data pre-
serves more of the original multilingual capabilities while
still achieving moderate domain adaptation gains. These
results highlight the critical role of managing training size
and data coverage to optimize the trade-off between spe-

cialization and generalization during adaptation.

1 Introduction

Adaptive Neural Machine Translation (NMT) tradition-
ally involves fine-tuning a pre-trained, generic model on a
small amount of in-domain data to improve performance
on a specialized target domain. While effective, this ba-
sic approach often leads the model to overfit the in-domain
distribution and lose the generalization capabilities learned
from large-scale generic data. To address this, mixed fine-
tuning for NMT has been first proposed in [1] based on the
idea of domain adaptation where in-domain data is limited.
This method updates a generic model, pre-trained on large-
scale generic data, by training it on a mix of in-domain
and generic samples, effectively improving in-domain per-
formance while mitigating overfitting. Prior studies have
applied it for various transfer scenarios, such as adapting
translations across different domains for the same language
pair [2] and improving low-resource translations by lever-
aging high-resource language data [3].
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Figure 1 Variants of mixed fine-tuning in sampling training
instances from in-domain and generic sets.

Concatenation

In this work, we apply mixed fine-tuning to adapt a
pre-trained multilingual model for a specific translation
task. Recognizing that data used in the development of
many state-of-the-art models is not always open-sourced,
we simulate this scenario by using a small subset of generic
data. We investigate the impact of varying training data
distributions (shaped by different sampling regimes), fo-
cusing on their influence on specialized and multilingual
translation performance.

2 Mixed fine-tuning: background
and variants

The mixed fine-tuning approach involves training a
generic model on out-of-domain data and then fine-tuning
the model using both in-domain and out-of-domain data.
In this work, we focus on the fine-tuning step. A com-
mon technique of this approach is oversampling, where
in-domain samples are repeated multiple times to balance
their weight against the larger generic dataset.

This work explores three distinct variants of mixed fine-
tuning, each defined by how in-domain (in size of 1) and
generic (in size of O) parallel sentences are combined.
Figure 1 illustrates the difference between these variants.

Oversampling As proposed in [1], oversampling in-
terleaves two datasets with a heavier sampling probability
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to in-domain data. The probability is based on the size of
the generic data relative to the total size, i.e., % for in-
% for generic data. Consequently,

each in-domain sample is repeated approximately % times,

domain data and 1 —

creating a combined set where 1 X % in-domain instances
are interleaved with O generic ones, thus a 1:1 ratio by the
end of training iterations.

Undersampling It uses the same sampling probabil-
ities as oversampling but stops earlier when all in-domain
samples have been added. Undersampling exhausts all 7
examples from the in-domain set, resulting in a total num-

berof -5- = % training samples. Of these, the generic
I+O

data is trimmed to % X (1-

oL
I+0’ — O~
Concatenation As a simpler alternative, it directly
combines the original in-domain and generic sets without
adjusting their sizes. The training set includes /+O parallel

sentences with raw data proportions.

3 Experimental setups

3.1 Datasets

Table 1 summarizes the distribution of languages in the

datasets used in the experiments reported in this work.

Table 1 Dataset distribution.
Languages translated from English

‘ Data

Train ‘ in-domain  Japanese (ja)

generic Spanish (es), Chinese (zh), Indonesian (id),
Portuguese (pt), Finnish (fi), Urdu (ur), Mace-

donian (mk), Albanian (sq), Dutch (nl)

Valid. ‘ in-domain  Japanese
Test ‘in-domain Japanese
generic Spanish, Chinese, Indonesian, Portuguese,

Finnish, Urdu, Macedonian, Albanian, Dutch,
Japanese, and others (over 100 languages)

In-domain data The in-domain data is sourced from
the Kyoto Free Translation Task (KFTT) corpus'), which
contains English-Japanese parallel sentences extracted
from Wikipedia articles. We apply several filtering cri-
teria as in [4] to both the source and target segments and
randomly sample 2k sentence pairs for validation and test.
For training, we experiment with three sizes of 5k, 10k and
50k parallel sentences.

Generic data The generic data is sampled from
OPUS? [5], a collection of parallel corpora used in devel-

1) https://opus.nlpl.eu/KFTT/corpus/version/KFTT
2) https://opus.nlpl.eu/opus-100.php.
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oping the series of OPUS translation models. We randomly
select 9 language pairs and curate 10k parallel sentences
for each pair following the same filtering procedures. In
total, 90k generic sentence pairs are selected for model

training.
3.2 Models and evaluation

We experiment with the Helsinki-NLP/opus-mt-en-
mul® model [6], which is capable of translating English
into 120 different languages.4) For mixed fine-tuning, we
implement three different settings, each designed to ex-
plore unique sampling strategies for combining in-domain
and generic data. These settings are compared against two
baselines: the pre-trained model, used without additional
fine-tuning, and basic fine-tuning, which updates the model
for convergence on English-to-Japanese translation using
only in-domain data. The evaluation is conducted on a spe-
cialized test set, aligned with the in-domain training data,
and a generic test set?) to assess generalization across mul-
tilingual translations. The generic set includes 9 selected
language pairs from the generic training data, Japanese-
specific translations, and over 100 other (unselected) lan-

guage pairs that were not seen during fine-tuning.

4 Results and analysis

4.1 Specialized versus generic translation

Table 2 presents the performance of multilingual MT
models fine-tuned for English-to-Japanese translation us-
ing various strategies. Without fine-tuning, the pre-trained
model lacks the specialized knowledge required for trans-
lating Wikipedia content (of KFTT sentences), achieving
a BLEU score of only 3.3 on the English-to-Japanese
test set. Introducing fine-tuning leads to significant im-
provements in domain-specific adaptation, though with a
slight degradation in generating the correct target language.
Basic fine-tuning, which uses only the 10k in-domain
dataset, increases the BLEU score by +5.6 points over
the baseline. When incorporating generic data through

mixed fine-tuning strategies, out-of-domain exposure pro-

3) https://huggingface.co/Helsinki-NLP/opus-mt-en-mul

4) The OPUS model is built on the MarianNMT architecture, con-
sisting of a 6-layer encoder and a 6-layer decoder with a total of 77
million trainable parameters.

5) https://object.pouta.csc.fi/Tatoeba-MT-models/
eng-mul/opus2m-2020-08-01.test. txt
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Table 2 Performance of translation models fine-tuned under
various configurations for interleaving 10k in-domain data (I)
and generic data (O). Models are evaluated on both specialized
(English-to-Japanese) and generic (multilingual) translation tasks
using BLEU, ChrF++ and LangAcc, where LangAcc measures the
accuracy of generating translations in the correct target language.

Fine-tuning Data size (k) BLEU ChrF++ LangAcc
approach 1 + (o] ) ) )
Specialized translation (ja)

- 0 + 0 33.02 8.8.02 100.0%
basic 10 + 0 8.9i().4 15-3t().3 99.7%
mixed-concat 10 + 90 9.5.04 16.1503 99.8%
mixed-under 10 + 1 8.8.0.3 153403 99.6%
mixed-over 90 + 90 | 13.1.95 19.8.04 100.0%
Generic translation (all)

- 0 + 0| 40508 59.7.07 71.7%
basic 10 + 0| 30.2:32 513407 71.0%
mixed-concat 10 + 90 | 18.8418 459.06 66.2%
mixed-under 10 + 1] 310130 532.07 71.3%
mixed-over 90 + 90 9.5:14  42.0:009 66.4%

Generic translation (unselected)
- 0 + 0| 39.0.3, 59.4.03 65.6%
basic 10 + 0] 28.1+35 50.5:038 65.0%
mixed-concat 10 + 90 | 152417 43.1:07 58.6%
mixed-under 10 + 1] 29.0:36 52.64038 65.0%
mixed-over 90 + 90 7241 388409 58.9%
Generic translation (selected)
- 0 + 0| 52.8:03 651415 96.7%
basic 10 + 0] 4l.l49 583413 95.9%
mixed-concat 10 + 90 | 44.5:7 61.8.13 97.6%
mixed-under 10 + 1| 423419  59.6413 97.2%
mixed-over 90 + 90 | 43.0479  60.64; 3 97.6%
Generic translation (ja)
- 0 + 0] 14959 19.0., 4 99.1%
basic 10 + 0 9.8:17 158414 98.7%
mixed-concat 10 + 90 89:17 153413 99.5%
mixed-under 10 + 1 99.17 158114 98.7%
mixed-over 90 + 90 93417 155413 99.6%

vides competitive performance, with larger amounts of
generic data yielding marginal improvements. In par-
ticular, mixed-concat, which accesses the full generic
data, achieves slight but statistically insignificant gains
over mixed-under that includes a small portion of generic
data. This indicates that the benefits of out-of-domain
data for specialized translation are limited. In contrast,
the oversampling strategy, which amplifies the presence
of in-domain instances by repeating each multiple times,
delivers the best performance in specialized translation,
achieving notable gains of approximately 10 points in both
BLEU and ChrF++ evaluations.

However, this improved in-domain performance comes
at a substantial cost to the general translation capabil-
ity. All fine-tuned models exhibit notable declines on
the generic multilingual test. More strikingly, increas-

ing generic data during fine-tuning (as in mixed-concat)
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paradoxically worsens generalization, hinting at potential
conflicts in representation learning when scaling up train-
ing computations. The oversampling regime, in particu-
lar, leads to a form of catastrophic forgetting, where pre-
viously acquired multilingual proficiency diminishes sig-
nificantly. This degradation is especially pronounced for
unselected languages that received no reinforcement dur-
ing fine-tuning. Similarly, intensive adaptation erodes the
general translation proficiency in the same language pair.
While mixed-over enhances the ability to translate spe-
cialized English-to-Japanese text, it fails to preserve the

quality of generic English-to-Japanese translation.

4.2 Influence of in-domain data scale

Fine-tuning 8basic ® mixed-concat ® mixed-under ® mixed-over

Specialized Generic (all) Generic (unselected)
5k 10k 50k 5k 10k 50k 5k 10k 50k

5.5 en : 5.8 s

5114 % \
209 o\
22.9 o
/ . -25.3 TN 261
45 &=

Training size relative to
Generic (selected) Generic (ja) in-domain data
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Figure 2 Differences in BLEU scores relative to the pre-trained
multilingual model for various fine-tuning strategies across three
scales of in-domain training data (5k, 10k, and 50k).

In addition to 10k in-domain scenario, we also con-
duct experiments using both smaller (5k) and larger (50k)
datasets. Figure 2 shows comparison between fine-tuned
models and the pre-trained MT model across three scales
in specialized and general multilingual translation capabil-
ities (as measured by BLEU).

For specialized translation, increasing the amount
of in-domain data consistently leads to better perfor-
mance. We observe that BLEU scores of fine-tuned
models are proportionally magnified as the amount of in-
domain data increases. The oversampling regime consis-
tently outperforms others in capturing the domain-specific
distribution across all in-domain data scales. It ampli-
fies the size of in-domain data by repeatedly exposing the
model to samples based on the ratio of generic to in-domain

data. Importantly, oversampling, while maintaining the
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total in-domain repetition constant, yields greater gains
when applied to more diverse datasets (as shown in Fig-
ure 3). By encountering a wider variety of examples in
larger in-domain datasets, the mixed-over model achieves
better generalization for the specialized task. Incorporat-
ing generic data (mixed-concat or mixed-under) yields
marginal gains over basic fine-tuning.

In contrast, adaptation to a specialized language pair ex-
acts a cost on multilingual translation quality, where fine-
tuning the generic model results in performance degrada-
tion. Both basic and mixed approaches suffer declines as
more in-domain data is introduced. Furthermore, we ob-
serve that increasing the training size during fine-tuning
exacerbates degradation on generic translation tasks, par-
ticularly for unselected language pairs (Figure 2). In
mixed-concat and mixed-over settings, where the train-
ing size is scaled up significantly in the Sk in-domain sce-
nario, the models perform substantially worse than ba-
sic fine-tuning. Undersampling, which limits access to
a smaller portion of generic data, emerges as a compar-
atively stable compromise in maintaining generalization.
Although the model still experiences declines compared to
the original generic baseline, these losses remain relatively
modest, performing better than other mixed fine-tuning set-
tings. This paradox suggests that more extensive training
appears to intensify conflicts in representation learn-
ing, ultimately harming performance in areas outside
the adapted domain.

For selected languages (those included in the generic
data), mixed fine-tuning strategies demonstrate a stable
degradation of around -10 points across different in-domain
data sizes. In contrast, basic fine-tuning, which excludes
these languages, exhibits a more substantial drop of -23
points in the 50k setting. This highlights that the presence
of even a small amount of generic data (as in mixed-under)
stabilizes performance on selected languages. When the
ratio between in-domain and generic data is less extreme,
the proportion of the in-domain appears to have minimal

impact on three settings of mixed fine-tuning.

4.3 Insights from negative results

While increasing the in-domain data improves spe-
cialized translation, our findings suggest that avoiding
excessive exposure to large volumes of generic data is

equally crucial. Increasing training size imposes a grow-
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ing penalty on generic multilingual translation perfor-
mance. Fine-tuning methods that integrate generic data
excessively can also lead to severe overfitting to the learned
distribution. Instead, undersampling ensures that the sam-
pling distribution remains more in line with the in-domain
data by trimming generic data, emerges as a more effective
strategy than oversampling (Figure 4). Selective inclusion
of generic data during adaptation can retain a residual level
of generalization.

In addition, it is crucial to carefully select generic data
when adapting pre-trained models that support multiple
languages or domains. Rather than maximizing the vol-
ume of generic data, prioritizing the coverage of sam-
ples proves more effective. In our experiments, the uni-
form distribution of generic data across 9 languages enables
the undersampling strategy to include representative exam-
ples from each language pair, even with small in-domain
datasets. By incorporating fewer but more representative
generic samples, the fine-tuned model achieves a better bal-
ance between specialized adaptation and multilingual gen-
eralization (Figure 5). These findings suggest that selecting
generic data to ensure comprehensive language coverage
within the pre-trained model would further enhance the ef-
fectiveness of mixed fine-tuning under the undersampling

strategy.

5 Conclusion

This work examined the effects of fine-tuning strate-
gies on adapting multilingual NMT models to special-
ized English-to-Japanese translation. We observed that
domain-specific expertise scales with the quantity of in-
domain samples. In particular, intensive exposure to in-
domain data (e.g., through oversampling) can substantially
enhance specialized translation quality. However, it risks
eroding general translation performance, especially on un-
selected language pairs not covered in generic training data.
Scaling in-domain data leads to cumulative degradation for
generic translation in basic fine-tuning. In contrast, mixed
fine-tuning facilitates better adaptation to out-of-domain
translations, but its effectiveness depends on the generic
data incorporated. Strategies that incorporate generic data
more conservatively, as with undersampling, help maintain
a better balance between domain adaptation and multilin-

gual generalization.
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A Training details

Fine-tuning is performed for up to 5 epochs with a batch
size of 32 on an Nvidia RTX A6000 GPU. We use a dropout
rate of 0.1, a maximum learning rate of 2e-5, and set the
beam search to 4 beams. The Adam optimizer is configured
with an epsilon of 1e-6. Model evaluation is conducted af-
ter each training epoch, with early stopping applied if there
is no improvement in validation losses for 3 consecutive
epochs.

B Trade-offs between specialized
and generic performance

Fine-tuning ® basic ® mixed-concat ® mixed-under ® mixed-cover
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Figure 3 Performance differences (BLEU) in in-domain trans-
lations between fine-tuned models and the pre-trained translation
model across various training data sizes. The size of each scatter
indicates the in-domain data used (5k, 10k, or 50k).
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Figure 4 Degradations in generic performance compared to
the pre-trained translation model. Scatter sizes indicate the in—
domain data used (5k, 10k, or 50k).
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Figure 5 Correlation of improvements in specialized (in-do-
main) translations and degradations in generic (out-of-domain)
translations. The labels around the scatters denote the in-domain
datasets used, while the size of each scatter represents the number
of generic examples involved during fine-tuning.
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