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Abstract
As Large Language Models support more and more lan-

guages, they face increasing challenges in alleviating lan-
guage inference and adapting to unseen languages. In this
work, we propose a modular fine-tuning pipeline for mul-
tilingual neural machine translation, where adapters are
trained separately for input and output languages. Dur-
ing translation, the parameters of the corresponding input
and output language adapters are combined using weighted
summation. Experiments on 5 languages show that our
methods can reach 50% of full-parameter fine-tuning per-
formance with only 0.5% to 1% trainable parameters.
Moreover, under certain weight configurations, merging
input and output language adapters outperforms using them
individually in some language directions, highlighting the
potential of our merging strategy.

1 Introduction
Multilingual Neural Machine Translation (MNMT) fo-

cuses on developing a unified model to translate among dif-
ferent languages. Although recent Large Language Models
(LLMs) can handle dozens or even hundreds of languages,
they also bring challenges related to training efficiency, lan-
guage interference, and adaptation to unseen languages.

To address these issues, recent research has gradually
focused on investigating the modular nature [1] of LLMs.
One line of research leverages the sparsity of model pa-
rameters by projecting the parameter space into a low-
rank, task-specific intrinsic subspace [2, 3, 4] such as Low-
rank Adaptation (LoRA) [5]. [6] builds language-specific
LoRAs to alleviate language interference in a parameter-
efficient way. Another line of research [7] attempts to ex-
tract language-specific sub-networks within models and ac-
tivate different sub-networks during training through mask-
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Figure 1: Example of our proposed modular fine-tuning
pipeline on four languages: English (en), Japanese (ja),
Chinese (zh), and German (de). We divided all adapters
into two categories: adapters of input language and
adapters of output language. During generation, we di-
rectly merge the corresponding two adapters (the colored
ones) from the adapter pool.

ing. Despite effectiveness, these methods require train-
ing on all language pairs simultaneously, which limits the
model’s ability to extend to unseen languages.

Therefore, we propose modular fine-tuning of MNMT,
a two-step pipeline which first trains adapters for different
languages separately and then combines selected adapters
directly without any further training. As shown in Fig-
ure 1, we categorize adapters into two types: adapters
for input language 𝑙in and adapters for output language
𝑙out. Using these two items, we can describe a transla-
tion as T(𝑙in, 𝑙out). For each translation, we only choose
two adapters from each category separately and then di-
rectly merge the parameters of these two adapters through
weighting during generation. Given 𝑛 languages, we can
reduce the total number of required adapters from 𝑛 × 𝑛 to
𝑛+𝑛 compared with fine-tuning for each language direction
separately. Additionally, since no additional retraining or
retrieval is required, our proposed method can be naturally
extended to unseen languages without compromising the
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performance of existing languages.
We conduct our experiments on a 5-language subset of

FLORES-101 [8]. The results show that we can reach 50%
of full-parameter fine-tuning performance with only 0.5%
to 0.1% trainable parameters. We also find that under spe-
cific weight settings, introducing input language adapters
can improve the performance of certain directions, demon-
strating the potential of our merging strategy. We further
introduce weight learning to analyze the impact of weights
on performance, indicating that the output language often
plays a more important role in translation tasks.

2 Related Work
Intrinsic Subspace Intrinsic Subspace is the minimal

parameter subspace required for models to learn new tasks.
[2, 9] showed that the fine-tuning of pre-trained models ac-
tually happened in a tiny subspace. Following their work,
there is an increasing tendency to explore the modular-
ity within pre-trained models [1] to improve translation
performance. [6] built different sized language-specific
adapters based on resource-level of languages to alleviate
the interference among languages. Another line of work
[7] try to locate language-specific neurons inside models
and extract sub-network for different languages. Despite
effectiveness, these methods require unified training of all
langauge-specific modules, which hinders their flexibility
in adapting to new languages.

Low-rank Adaptation (LoRA) LoRA [5] employs
the product of two low-rank matrices to replace the orig-
inal parameter matrix for fine-tuning. This method is
parameter-efficient and widely used in Large Language
Models. Recent works [10, 11] have focused on how to fur-
ther enhance the efficiency of LoRA. [10] modeled LoRA
in the form of singular value decomposition and improved
efficiency by pruning less important singular values. [11]
reduced trainable parameters of LoRA by only leaning
scaling vectors during training, fixed low-rank matrices are
randomly initialized and shared for each layer. We choose
LoRA as our adapter structure thanks to its efficiency and
flexibility.

3 Methods
3.1 Multilingual Neural Machine Transla-

tion from a Modular Perspective
Given a set of 𝑛 languages 𝕃 = {𝑙1, 𝑙2, · · · , 𝑙𝑛}, multilin-

gual machine translation aims to translate an input sentence
x in the source language src ∈ 𝕃 into an output sentence
y in the target language tgt ∈ 𝕃. With an MNMT dataset
including 𝑁 sentence pairs 𝔻 = {(x𝑖 , y𝑖), 𝑖 ∈ 1 · · · 𝑁}, the
training loss is defined as:

LMNMT = −
∑
𝒙,𝒚∈𝔻

𝐽∑
𝑗=1

log 𝑝𝜃 (𝑦 𝑗 |𝒚< 𝑗 , 𝒙) (1)

where 𝒙 = 𝑥1, 𝑥2, · · · , 𝑥𝐼 is a source sentence with length 𝐼

and 𝒚 = 𝑦1, 𝑦2, · · · , 𝑦𝐽 is the corresponding target sentence
with length 𝐽.

To enable modular fine-tuning, considering the MNMT
task between input and output languages, we follow a two-
step pipeline, which first train adapters for input languages
𝔸𝑖𝑛 = {Ain

𝑙1
,Ain

𝑙2
, · · · ,Ain

𝑙𝑛
} and output languages 𝔸𝑜𝑢𝑡 =

{Aout
𝑙1
,Aout

𝑙2
, · · · ,Aout

𝑙𝑛
} separately, and then when translate

from a soure language to a target langauge src → tgt, we
directly merge Ain

𝑙𝑠𝑟𝑐
and Aout

𝑙𝑡𝑔𝑡
during generation.

3.2 Training Modular LoRAs

LoRA [5] is widely used in Parameter-efficient Fine-
tuning (PEFT) for Large Language Models where fine-
tuning is re-parameterized in a low-rank intrinsic subspace.
For a weight matrix in a pre-trained model W ∈ ℝ𝑑×𝑘 ,
LoRA forward pass can be calculated as:

𝒉 = W𝒙 + BA𝒙 (2)

where B ∈ ℝ𝑑×𝑘 and A ∈ ℝ𝑟×𝑑 . During training, 𝑊 will
be frozen and the trainable parameters, i.e., 𝐴 and 𝐵, will
be reduced from 𝑑×𝑘 to 𝑑×𝑟+𝑟×𝑘 , where 𝑟 ≪ min(𝑑, 𝑘).

We divided LoRA into two categories: LoRAs for in-
put language (LoRA𝑖𝑛), and LoRAs for output language
(LoRA𝑜𝑢𝑡 ), and then we train LoRA𝑖𝑛s and LoRA𝑜𝑢𝑡s for
each language separately in a English-centric way, e.g.,
when translating from Japanese to Chinese, the LoRA𝑖𝑛

of Japanese will be trained by the data of Japanese →
English, and the LoRA𝑜𝑢𝑡 of Chinese will be trained by
the data of English → Chinese. Since LLMs are trained
on unbalanced, English-dominated corpora, English often
serves as an internal pivot language. Therefore, we select
English as the bridge language in our setting to maximize
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cross-lingual transfer learning. This setting also makes our
pipeline easier to extend to new languages, as introducing
a new language requires only preparing data between the
new language and English. For convenience, the LoRA𝑖𝑛

and LoRA𝑜𝑢𝑡 of English will be trained by the data of
English → English.

3.3 Merging LoRAs

We compare two different strategies [12] when merging
LoRA𝑖𝑛 and LoRA𝑜𝑢𝑡 .

Merge the outputs of LoRAs In this setting, we
merge the outputs of LoRA𝑖𝑛 and LoRA𝑜𝑢𝑡 as:

𝒉 = 𝑤inLoRAin (𝒙) + 𝑤outLoRAout (𝒙)

= (𝑤inBinAin + 𝑤outBoutAout)𝒙
= LoRAmerged (𝒙)

(3)

Merge B and A separately In this setting, we merge
LoRAin and LoRAout with the following equation:

𝒉 = (√𝑤inBin +
√
𝑤outBout) (

√
𝑤inAin +

√
𝑤outAout)𝒙 (4)

The two settings have similar training and inference ef-
ficiency. The second setting, which separately merges the
A and B matrices, offers finer granularity but requires all
LoRAs to share the same rank. In contrast, the first setting
directly merges the product of A and B matrices, potentially
losing some information but offering greater flexibility in
rank configuration.

3.4 Weight Learning

To further analyze the weight dynamics of LoRA𝑖𝑛 and
LoRA𝑜𝑢𝑡 , we introducee a weight learning method inspired
by neural architecture search [13, 6]. Given a pre-trained
weight matrix W with LoRAin and LoRAout, we calculate
a weighted sum during forward pass as follows:

𝒉 = W𝒙 + 𝑤in · LoRAin (𝒙) + 𝑤out · LoRAout (𝒙) (5)

where 𝑤in, 𝑤out are scalars shared among all LoRA mod-
ules in the same layer. We use softmax to make sure the
weights are non-negative and sum up to 1. Specifically,
𝑤in, 𝑤out = softmax(𝑤0, 𝑤1), where 𝑤0 and 𝑤1 are initial-
ized to 1.0.

4 Experimental Setup
Dataset FLORES-101 [8] is a high-quality parallel

dataset, including 3,001 sentences from English Wikipedia

which are translated into 101 languages by human trans-
lators. Sentences are divided into three splits: dev (997
sentences), devtest (1,012 sentences), and test (992 sen-
tences). Since the test set is not publicly available, we
use the dev set for training and devtest set for evaluation.
We choose five languages：English (en), French (fr), Ger-
man (de), Japanese (ja) and Chinese (zh) in our following
experiments.

Training We chose Qwen2.5-Instruct-0.5B [14] as our
base model. We modified the Transformers 1）and PEFT
2）libraries to implement our LoRA settings in the exper-
iments. We fine-tuned the model via Supervised Fine-
tuning (SFT) 3）. For all experiments, we trained the model
for 2 Epochs with a learning rate of 0.00002. All models
were trained with a single NVIDIA A100-40GB on the
mdx [15] cluster.

Evaluation We choose full-parameter fine-tuning as
our baseline and set the beam size to 5 during generation.
We report the chrF++ score [16].

5 Results
Table 1 shows the chrF++ scores on selected 5 lan-

guages. We calculate the averaged score when translating
to, e.g., →en, and translating from a specific langauge,
e.g., en→. First, we compared the performance of using
only LoRAin or LoRAout separately. We found that using
LoRAout achieved better results, indicating the target lan-
guage plays a more important role in multilingual machine
translation.

As mentioned in Section 3.3, we compared two merging
strategies with different weight configurations: merging
the outputs of LoRAs (Setting 1), and merging A and
B separately (Setting 2). As shown in the Talbe 1, we
achieved 50% performance of full parameter fine-tuning
while using only 0.5% ∼ 1% trainable parameters. Al-
though using more information from LoRAout (1:9) gen-
erally yields better results for most language directions
(except for →en), we found that under certain weight set-
tings, introducing LoRAin can achieve better performance
(underlined scores).

As mentioned in Section 3.4, we showed the results of
weight learning in Figure 2 of Appendix A to better un-
derstand the weight dynamics of LoRAin and LoRAout.

1） https://github.com/huggingface/transformers

2） https://github.com/huggingface/peft

3） https://huggingface.co/docs/trl/sft trainer
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Table 1: The chrF++ scores on 5 languages: English (en), French (fr), German (de), Japanese (ja), Chinese (zh). We
calculate the average scores for a given language 𝑙𝑖 as the input language and output language separately, denoted as 𝑙𝑖 →
and → 𝑙𝑖%. Params means the ratio of trainable parameters compared with full-parameter fine-tuning. For LoRAin and
LoRAout, we only use the single LoRA module without merging. Setting 1 refers to merging the outputs of LoRAin and
LoRAout and Setting 2 refers to merging A and B separately. The ratio behind shows the weights 𝑤in and 𝑤out we use for
each setting. We underline the scores in Setting 1 and Setting 2 that outperform those achieved by using only LoRAin or
LoRAout independently.

Language Direction
Methods %Params en→ fr→ de→ ja→ zh→ →en →fr →de →ja →zh

Pre-train - 30.75 28.85 29.25 27.05 31.6 48.78 38.8 32.55 10.86 16.5
Full-parameter fine-tuning 100% 34.25 33.23 33.38 30.9 33.5 51.08 42.13 34.78 16.1 21.1
LoRAin 0.5% 30.0 30.53 30.85 27.85 32.0 50.125 39.45 31.95 13.48 16.23
LoRAout 0.5% 32.48 31.6 31.45 28.4 30.88 47.25 40.65 34.15 14.475 18.275
Setting 1 (1:9) 1% 32.25 31.7 31.65 28.53 31.5 48.58 40.48 34.075 14.4 18.1
Setting 1 (3:7) 1% 32.05 31.63 31.825 28.6 32.25 49.98 40.5 33.83 14.38 17.68
Setting 1 (7:3) 1% 31.2 31.08 31.45 28.3 32.23 50.4 39.95 32.95 13.9 17.05
Setting 1 (9:1) 1% 30.43 30.65 31.2 28.05 32.1 50.2 39.8 32.28 13.58 16.58
Setting 2 (1:9) 1% 32.78 31.48 31.38 28.03 30.33 45.98 40.6 34.23 14.6 18.58
Setting 2 (3:7) 1% 32.63 31.03 31.08 28.4 30.1 47.45 40.48 34.03 14.45 17.68
Setting 2 (7:3) 1% 30.6 29.93 30.5 28.1 32.28 49.9 39.85 33.05 14.05 14.55
Setting 2 (9:1) 1% 29.85 29.85 30.43 27.75 32.25 50.0 39.55 32.33 13.78 14.48

We observed that for language pairs involving English, the
model focuses mainly on the target language information
when translating from English to other languages (Fig-
ure 2a,2b, 2c, 2d), whereas it emphasizes the source lan-
guage information when translating from other languages
to English (Figure 2e,2i,2m,2q). We attribute this to the
English-centric training process, where, for consistency,
we included English-to-English data to train the English
adapter. However, the results suggest that such data is
unnecessary, leading the model to always prioritize direc-
tions involving other languages. Besides that, excluding
language directions involving English, target information
plays a dominant role in 8 out of the remaining 12 direc-
tions (Figure 2g,2h,2j,2k,2l,2r,2s,2t). For the remaining
four directions (Figure 2f, 2n,2o,2p), we observed that the
model’s focus shifts from the source language to the target
language in the intermediate layers. From the results of
weight learning, we infer that the target language generally
plays a more important role in machine translation. This
observation also explains why assigning greater weight to
LoRAout yields better performance.

6 Conclusion
In this work, we propose a modular fine-tuning pipeline

for LLM-based Multilingual Neural Machine Translation,
which first divide LoRAs into two groups: LoRAs for
input languages (LoRAin) and LoRAs for output lan-
guages (LoRAout) and then train these LoRA adapters in an
English-centric way. During translation, the correspond-
ing LoRAin and LoRAout are directly merged without any
additional training. These enables our pipeline to be easily
extended to new languages by training only the LoRAin

and LoRAout for the new language, without impacting the
performance of existing languages. Our experiments on
the FLORES dataset with five languages demonstrate that
using only 0.5% to 1% of the trainable parameters achieves
50% performance of full-parameter fine-tuning. Addi-
tionally, under specific weight configurations, combining
LoRAin and LoRAout yields better results than using them
individually, highlighting the potential of this approach.

― 225 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



References
[1] Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi

Jiang, Feng Yao, Xu Han, Xiaozhi Wang, Shuo Wang,
Yufei Huang, Guanyu Lin, Yingfa Chen, Weilin Zhao,
Yuge Tu, Zexuan Zhong, Ao Zhang, Chenglei Si, Khai Hao
Moo, Chenyang Zhao, Huimin Chen, Yankai Lin, Zhiyuan
Liu, Jingbo Shang, and Maosong Sun. Configurable foun-
dation models: Building llms from a modular perspective,
2024.

[2] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. In International Conference on Learning
Representations, 2018.

[3] Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning
Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi Li, Lei
Hou, Peng Li, Maosong Sun, and Jie Zhou. Exploring
universal intrinsic task subspace via prompt tuning, 2022.

[4] Zhong Zhang, Bang Liu, and Junming Shao. Fine-
tuning happens in tiny subspaces: Exploring intrinsic task-
specific subspaces of pre-trained language models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pp. 1701–1713, Toronto, Canada, July
2023. Association for Computational Linguistics.

[5] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els, 2021.

[6] Zhe Cao, Zhi Qu, Hidetaka Kamigaito, and Taro Watan-
abe. Exploring intrinsic language-specific subspaces in
fine-tuning multilingual neural machine translation. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
editors, Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing,
pp. 21142–21157, Miami, Florida, USA, November 2024.
Association for Computational Linguistics.

[7] Shaomu Tan, Di Wu, and Christof Monz. Neuron special-
ization: Leveraging intrinsic task modularity for multilin-
gual machine translation, 2024.

[8] Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan,
Marc’Aurelio Ranzato, Francisco Guzman, and Angela
Fan. The flores-101 evaluation benchmark for low-resource
and multilingual machine translation, 2021.

[9] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer.
Intrinsic dimensionality explains the effectiveness of lan-
guage model fine-tuning. In Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli, editors, Proceedings of
the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 7319–7328,
Online, August 2021. Association for Computational Lin-
guistics.

[10] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos
Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen,

and Tuo Zhao. Adalora: Adaptive budget allocation for
parameter-efficient fine-tuning, 2023.

[11] Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. VeRA: Vector-based random matrix adaptation. In
The Twelfth International Conference on Learning
Representations, 2024.

[12] Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou,
Hongxia Yang, Kun Kuang, and Fei Wu. LoraRetriever:
Input-aware LoRA retrieval and composition for mixed
tasks in the wild. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Findings of the Association
for Computational Linguistics: ACL 2024, pp. 4447–
4462, Bangkok, Thailand, August 2024. Association for
Computational Linguistics.

[13] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. Journal of Ma-
chine Learning Research, Vol. 20, No. 55, pp. 1–21,
2019.

[14] Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei
Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024.

[15] Toyotaro Suzumura, Akiyoshi Sugiki, Hiroyuki Takizawa,
Akira Imakura, Hiroshi Nakamura, Kenjiro Taura, To-
mohiro Kudoh, Toshihiro Hanawa, Yuji Sekiya, Hiroki
Kobayashi, Yohei Kuga, Ryo Nakamura, Renhe Jiang,
Junya Kawase, Masatoshi Hanai, Hiroshi Miyazaki, Tsu-
tomu Ishizaki, Daisuke Shimotoku, Daisuke Miyamoto,
Kento Aida, Atsuko Takefusa, Takashi Kurimoto, Koji
Sasayama, Naoya Kitagawa, Ikki Fujiwara, Yusuke Tan-
imura, Takayuki Aoki, Toshio Endo, Satoshi Ohshima,
Keiichiro Fukazawa, Susumu Date, and Toshihiro
Uchibayashi. mdx: A cloud platform for support-
ing data science and cross-disciplinary research col-
laborations. In 2022 IEEE Intl Conf on Depend-
able, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 1–7,
2022.
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A Results of Weight Learning
As shown in Figure 2, we illustrate the trend of weight changes in the model for each language direction after weight

learning.
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Figure 2: Results of Weight Learning
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