
Skip-bigrams reconstruct trigrams in 2-word languages

Shohei Hidaka1

1Japan Advanced Institute of Science and Technology
shhidaka@jaist.ac.jp

Abstract
In natural language processing, it has been empirically

known that skip-grams, co-occurrence statistics of two
words with some number of words in between them, is
an effective source of data to learn semantic nature of the
words. In this study, we propose a new theoretical account
for why a set of skip-grams is effective at least for two-word
languages, by giving a theorem that a set of trigram prob-
abilities is representable with a set of skip bigrams. This
representation theorem justifies the use of skip bigrams or
so-called shiftgrams as a computationally efficient source
to access higher order n-gram.
1 Effectiveness of skip-gram statis-
tics
In natural language processing, it has been empirically

known that semantic structure of words are represented by
the word vector by learning the skip-grams [1, 2], which is
co-occurrence statistics (𝑋𝑡 , 𝑋𝑡+𝑠) of a pair of word at 𝑡 and
word 𝑡+𝑠with a skip length 𝑠 = 1, 2, . . .. There are previous
studies that have tried to explain this empirical finding
[3, 4, 5]. Most of such previous studies have hypothesized
that the word vector gives a effective representation due to
their special settings of the learning scheme of the word
vector models (i.e., negative sampling) [3].

In this study, we take an apprroach distinct from these
previous studies, and mathematically analyze the funda-
mental nature of language systems, represented by n-
gram statistics. Our primary focus is how trigram statis-
tics, the conditional probability 𝑃(𝑋𝑡+2 |𝑋𝑡 , 𝑋𝑡+1), can be
represented by a set of 𝑠-skip bigrams, 𝑃(𝑋𝑡+𝑠 |𝑋𝑡 ) for
𝑠 = 1, 2, . . .. There is a trivial relationship that 𝑠-skip bi-
grams 𝑃(𝑋𝑡+𝑠 |𝑋𝑡 ) for each 𝑠 = 1, 2, . . . is constructed by a
given trigram 𝑃(𝑋𝑡+2 |𝑋𝑡 , 𝑋𝑡+1) of a Markov process. Our
question is the converse – can we construct the trigram only
from a set of 𝑠-skip bigrams? This is a focus special case,
that may be generalized to the relationship between 𝑠-skip

bigrams and a general 𝑛-grams. If such fundamental rela-
tionship between (n-1)-grams and n-grams is established,
it would explain why skip-gram statistics is a good source
of data to learn semantic nature of words or language in
general – skip-gram gives a sufficient statistics of n-grams
and is computable efficiently.

2 Skip bigram
In this study, we assume a language 𝐿 has a set

of 𝑘 words 𝕎𝑘 := {0, 1, 2, . . . , 𝑘 − 1}, and we call a
Markov process over a series of 𝑋0, 𝑋1, . . . ∈ 𝕎𝑘 lan-
guage system. In particular, a language system is
called 𝑛-grams of 𝐿, if 𝑃(𝑋𝑡 |𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋𝑡−𝑛−𝑠) =

𝑃(𝑋𝑡 |𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋𝑡−𝑛) for any 𝑡 and 𝑠 = 0, 1, 2, . . ..
So any 𝑛-gram language system with 𝑘 words has
(𝑘 − 1)𝑘𝑛−1 parameters, those are the conditional
probabilities 𝑃(𝑋𝑡 |𝑋𝑡−𝑛+1, . . . , 𝑋𝑡−2, 𝑋𝑡−1) ≥ 0 with∑
𝑋𝑡 ∈𝕎𝑘

𝑃(𝑋𝑡 |𝑋𝑡−𝑛+1, . . . , 𝑋𝑡−2, 𝑋𝑡−1) = 1. In this study,
we assume any language system under analysis is ergodic,
or equivalently it has a unique set of stationary probabili-
ties.

To encode the joint random variables of 𝑚-series, with-
out loss of generality, we fix the encoder map ℎ𝑘,𝑚 :
𝕎𝑚
𝑘 → 𝐶𝑘,𝑚 := {1, 2, . . . , 𝑘𝑚} by

ℎ𝑘,𝑚 (𝑋𝑡−𝑚+1, 𝑋𝑡−𝑚+2, . . . , 𝑋𝑡 ) := 1 +
𝑚∑
𝑗=1

(
𝑋𝑡−𝑚+ 𝑗 − 1

)
𝑘 𝑗−1.

(1)

In this encoding of the joint random variables, the transition
matrix𝑄2 ∈ ℝ𝑘×𝑘 of any bigram language system is of the
form

𝑄2 :=

©«
𝑞0 |0 𝑞0 |1 . . . 𝑞0 |𝑘−1

𝑞1 |0 𝑞1 |1 . . . 𝑞1 |𝑘−1
...

...
. . .

...

𝑞𝑘−1 |0 𝑞𝑘−1 |1 . . . 𝑞𝑘−1 |𝑘−1

ª®®®®®®¬
, (2)

where 𝑞𝑖 | 𝑗 := 𝑃(𝑋𝑡 = 𝑖 |𝑋𝑡−1 = 𝑗) and
∑
𝑖∈𝕎𝑘

𝑞𝑖 | 𝑗 = 1 for
any 𝑗 ∈ 𝕎𝑘 . Moreover, the transition matrix 𝑄3 ∈ ℝ𝑘

2×𝑘2
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of any trigram language system is of the form

𝑄3 :=
∑

𝑖, 𝑗∈𝕎𝑘

𝑒𝑘,𝑖 ⊗ 𝑒𝑘, 𝑗𝑒⊤𝑘, 𝑗 ⊗ 𝑟𝑖, 𝑗 , (3)

where 𝑟𝑖, 𝑗 = (𝑞𝑖 | (0, 𝑗 ) , . . . , 𝑞𝑖 | (𝑘−1, 𝑗 ) ).
Let 𝜃2 = (𝜃0, 𝜃1, . . . , 𝜃𝑘−1)⊤ ∈ ℝ𝑘 be the stationary

probability vector of the bigram system such that 𝜃2 =

𝑄2𝜃2, and 𝜃3 = (𝜃 (0,0) , 𝜃 (1,0) , . . . , 𝜃 (𝑘−1,𝑘−1) )⊤ ∈ ℝ𝑘
2 be

the stationary probability vector of the trigram system such
that 𝜃3 = 𝑄3𝜃3.

2.1 Tensor form and tensor product

The set of 𝑛-gram conditional probabilities
𝑃 (𝑋𝑡 |𝑋𝑡−1, . . . , 𝑋𝑡−𝑛+1) is naturally represented by
a 𝑛th order tensor (𝑛-tensor in short). Real-valued 𝑛-tensor
ℝ𝑘1×𝑘2×...×𝑘𝑛 is a vector space of real-valued maps
{0, . . . , 𝑘1 − 1} × . . . × {0, . . . , 𝑘𝑛 − 1} → ℝ. Let us
denote ℝ𝑘𝑛 := ℝ𝑘1×𝑘2×...×𝑘𝑛 for 𝑘 = 𝑘1 = 𝑘2 = . . . = 𝑘𝑛.

We call a tensor product ★ : ℝ𝑘𝑛 ×ℝ𝑘
𝑛 → ℝ𝑘

𝑛 convo-
lution defined by

𝑃 ★𝑄 := (4)∑
𝑋𝑡−1∈𝐾

𝑃(𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋𝑡−𝑛+1)𝑄(𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋𝑡−𝑛),

for 𝑃,𝑄 ∈ ℝ𝑘
𝑛 . In particular, denote for 𝑚 ≥ 0

𝑄𝑚 :=

𝐸𝑛,𝑘 if 𝑚 = 0,

𝑄𝑚−1 ★𝑄 otherwise
, (5)

where 𝐸𝑛,𝑘 ∈ ℝ𝑘
𝑛 is the left unit tensor satisfying 𝐸𝑛,𝑘 ★

𝑄 = 𝑄 for any tensor 𝑄 ∈ ℝ𝑘
𝑛 . Specifically,

𝐸𝑛,𝑘 (𝑖1, 𝑖2, . . . , 𝑖𝑛) =


1 if 𝑖1 = 𝑖2

0 otherwise
. (6)

This convolution is useful to represent a time-shift oper-
ation in the following sense: If 𝑄 ∈ ℝ𝑘

𝑛 is time-invariant
𝑛-gram conditional probability𝑄(𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋𝑡−𝑛+1) =
𝑃 (𝑋𝑡 |𝑋𝑡−1, . . . , 𝑋𝑡−𝑛+1), the convolution of 𝑘 th power rep-
resents shift in the time step of random variables:

𝑄𝑘 (𝑋𝑡 , 𝑋𝑡−𝑘 , . . . , 𝑋𝑡−𝑛−𝑘+2) (7)

= 𝑃 (𝑋𝑡 |𝑋𝑡−𝑘 , . . . , 𝑋𝑡−𝑛−𝑘+2) . (8)

Define reduction operator 𝑟𝜃,𝐼 : ℝ𝑘
𝑛 → ℝ𝑘

|𝐼 | for any
𝐼 ⊆ 𝑁 = {1, 2, . . . , 𝑛} for 𝑄 ∈ ℝ𝑘

𝑛 by

𝑟𝐼 (𝑄) =
∑

(𝑖 𝑗 )∈{1,...,𝑛}\𝐼 ∈𝐾𝑛−|𝐼 |

𝑄(𝑖1, 𝑖2, . . . , 𝑖𝑛), (9)

𝑚-shifgram 𝑆𝑚 : ℝ𝑘𝑛 → ℝ𝑘
2 is defined by

𝑆𝑚 (𝑄) := 𝑟{1,2}
(
𝑄𝑚Θ𝑄

)
, (10)

where Θ𝑄 is the stationary tensor associated to 𝑄.
The 𝑚-shiftgram of 𝑛-gram tensor 𝑄 ∈ ℝ𝑘

𝑛 has the
following properties. For 𝑚′ = 2, 3, . . . , 𝑛,

𝑆𝑚 (𝑄) = 𝑟{1,𝑚′ }
(
𝑄𝑚−𝑚′+2Θ𝑄

)
. (11)

3 Inverse problem
3.1 effective isomorphism between tri-

grams and shiftgrams
Suppose we have the series of all 𝑚-shiftgrams 𝑆(𝑄) :=

{𝑆𝑚 (𝑄)}𝑚=0,1,... of some unknown 𝑛-gram probability
tensor 𝑄 ∈ ℝ𝑘

𝑛 . Then can we uniquely identify the
original probability tensor 𝑄 that generates 𝑆(𝑄)? Let
us focus on 𝑛 = 3 in this paper. For each fixed
𝑚′ = 0, 1, . . ., we have 𝑛 − 1 different 𝑚-shiftgrams
𝑆𝑚 (𝑄) = 𝑟{1, (𝑚+2−𝑚′ ) }

(
𝑄𝑚

′
Θ𝑄

)
for 𝑚′ ≤ 𝑚 ≤ 𝑚′ + 𝑛− 2

due to the identity (11). For each 𝑚′, 𝑄 is constrained
by (𝑛 − 1) matrices of 𝑚-shiftgrams 𝑆𝑚 (𝑄) and the sum∑
𝑖∈𝐾 𝑄

𝑚′ (𝑖, 𝑗 , 𝑘) = 1 is also constrained. So 𝑄𝑚′ may
have at most (𝑘 − 1)𝑛 polynomial equations, but only
(𝑘 − 1)𝑛−1 equations are new constraints not expressed
by (11) for 𝑚′ ≥ 𝑛 − 1. Thus, there are at most
𝑘2+ 𝑘 (𝑘−1) +𝑚′ (𝑘−1)2 polynomial equations for a series
of 𝑆0 (𝑄), 𝑆1 (𝑄), . . . , 𝑆𝑚′ (𝑄), and thus at least 𝑚′ ≥ 𝑘 to
have the sufficient number 𝑘3 of polynomial equations to
identify 𝑄 ∈ ℝ𝑘

𝑛 .

3.2 Case with 𝑘 = 2 and 𝑛 = 3

To be specific, let us study 𝑘 = 2 and 𝑛 = 3
as a minimal example. In this case 𝑆1 (𝑄), 𝑆2 (𝑄) is
needed to have a sufficient number of equations. Let(
𝑄1 𝑄2 . . . 𝑄𝑚

)
denote the third order tensor by

series of matrices 𝑄(𝑖, 𝑗 , 𝑘) = 𝑄𝑘 (𝑖, 𝑗) for 𝑖, 𝑗 , 𝑘 ∈ 𝐾 . For
𝑘 = 2 and 𝑛 = 3, the trigram probability tensor is

𝑄 =
(
𝑞00 𝑞10 𝑞01 𝑞11

)
(12)

=

(
𝑞0 |00 𝑞0 |10 𝑞0 |01 𝑞0 |11

𝑞1 |00 𝑞1 |10 𝑞1 |01 𝑞1 |11

)
, (13)

where 𝑞𝑖 𝑗 = (𝑞0 |𝑖 𝑗 , 𝑞1 |𝑖 𝑗 )⊤ ∈ ℝ2, and

𝑄2 =
(
(𝑞00, 𝑞10) 𝑞00 (𝑞01, 𝑞11) 𝑞10 (𝑞00, 𝑞10) 𝑞01 (𝑞01, 𝑞11) 𝑞11

)
.

(14)
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Thus, with the stationary tensor Θ𝑄 (𝑖, 𝑗 , 𝑘) := 𝜃 𝑗𝑘 , the
𝑚-shiftgrams for 𝑚 = 1, 2, 3 are

𝑆1 (𝑄) =
∑
𝑗∈{0,1}

𝑞𝑖 𝑗𝜃𝑖 𝑗𝑒
⊤
𝑛,𝑖 . (15)

𝑆2 (𝑄) =
∑

𝑖∈{0,1}
𝑞𝑖 𝑗𝜃𝑖 𝑗𝑒

⊤
𝑛, 𝑗 . (16)

𝑆3 (𝑄) =
∑

𝑖, 𝑗∈{0,1}
(𝑞0𝑖 , 𝑞1𝑖) 𝑞𝑖 𝑗𝜃𝑖 𝑗𝑒⊤𝑛, 𝑗 . (17)

With (15), (16), and the sum-to-one constraint for 𝑖, 𝑗 ∈ 𝐾

1⊤𝑘 𝑞𝑖, 𝑗 = 1, (18)

7 independent linear equations are for 𝑄 ∈ ℝ23 by fixing
1, 2-shiftgrams.

Lemma 1 For 𝑘 = 2 and 𝑛 = 3, there are at most two
trigram probability tensors 𝑄 satisfy (18), (15), (16), and
(16) for a given 𝑆1 (𝑄), 𝑆2 (𝑄), and 𝑆3 (𝑄), if

𝜃𝑖 𝑗 = e⊤𝑘,𝑖𝑆1 (𝑄)e𝑘, 𝑗 (19)

1⊤𝑘 𝑆1 (𝑄) = 1⊤𝑘 𝑆2 (𝑄) (20)

𝑆1 (𝑄)1𝑘 = 𝑆2 (𝑄)1𝑘 . (21)

Otherwise, there is no𝑄 satisfying the equations (18), (15),
(16), and (17).

Proof Here we explicitly solve the equations (18), (15),
(16), and (16) by letting the tensor 𝑄 as its variables.
Specifically, the vectorized variables vec (𝑄) ∈ ℝ𝑘

𝑛 is
required to be in the kernel of the matrix 𝐶vec (𝑄) = 𝑠 ∈
ℝ3𝑘2 such that:

𝐶 := e3,1 ⊗ 𝐼𝑘2 ⊗ 1⊤𝑘 + e3,2 ⊗ 1⊤𝑘 ⊗ 𝐼𝑘2 + e3,3 ⊗ 𝐼𝑘 ⊗ 1⊤𝑘 ⊗ 𝐼𝑘
(22)

𝑠 := e3,1 ⊗ vec
(
Θ𝑄

)
+ e3,2 ⊗ vec (𝑆1 (𝑄)) + e3,3 ⊗ vec (𝑆2 (𝑄)) .

(23)

This equation 𝐶vec (𝑄) = 𝑠 gives a set of 7 independent
linear equations, only if (19), (20), and (21) holds. Specifi-
cally, the solution is 𝑞𝑖 | 𝑗𝑘 = 𝑎𝑖 𝑗𝑘𝑥+𝑏𝑖 𝑗𝑘 for each 𝑖, 𝑗 , 𝑘 ∈ 𝐾
with any 𝑥 ∈ ℝ, where

𝑎𝑖 𝑗 = 𝜃
−1
𝑖 𝑗 (−1)𝑖+ 𝑗 (1,−1)⊤ (24)

𝑏𝑖 𝑗 = 𝜃𝑖 𝑗e𝑘,2 +
(
𝛿1𝑖𝛿0 𝑗𝑆

(2)
00 + 𝛿0𝑖𝛿1 𝑗𝑆 (1)00 + 𝛿1𝑖𝛿1 𝑗

(
𝑆 (1)01 − 𝑆 (2)00

))
(1,−1)⊤

(25)

Inserting 𝑞𝑖 | 𝑗𝑘 = 𝑎𝑖 𝑗𝑘𝑥 + 𝑏𝑖 𝑗𝑘 to (17), it gives a quadratic
equation

𝛼𝑥2 + 𝛽𝑥 + 𝛾 = 0, (26)

where

𝛼 =
∑
𝑖, 𝑗∈𝐾

𝜃−1
𝑖 𝑗 (27)

𝛽 = 𝜃00 (2𝑎000𝑏000 + 𝑎010𝑏100 + 𝑏010𝑎100) (28)

+ 𝜃01 (𝑎000𝑏001 + 𝑏000𝑎001 + 𝑎010𝑏101 + 𝑏010𝑎101)

𝛾 = (𝑏0 |00, 𝑏0 |10)
(
𝑏00 𝑏01

)
(𝜃00, 𝜃01)⊤. (29)

This quadratic equation has the leading coefficient 𝛼 ≠ 0.
Thus, it has at most two probability tensors 𝑄 satisfying
the equations, unless the quadratic equation has a factor
(𝑎𝑖 𝑗𝑘𝑥 + 𝑏𝑖 𝑗𝑘 − 𝑞𝑖 | 𝑗𝑘) for some 𝑖, 𝑗 , 𝑘 ∈ 𝕂. □

4 Summary and Conjecture
Lemma 1 demonstrates a given set of 𝑚-shiftgrams is

generally sufficient to reconstruct trigrams in two-word
languages up to finite samples (there two possible trigram
probability tensors 𝑄). We expect that this special lemma
can be probably extended to any general 𝑘 > 2, and perhaps
for 𝑛 > 3 as well. This putative generalized theorem would
fully explains why a set of 𝑚-shiftgrams or skip-bigrams
approximates 𝑛-gram probabilities well. Also this general-
ized theorem would give mapping how higher 𝑛-grams are
embedded into a series of𝑚-grams, and the number of such
maps will be bounded by the number of words 𝑘 , which is
much smaller than an exponential function of 𝑛. Thus, it
may open up a theoretical explanation why n-grams, with
an exponential number of combinations, can be learned
efficiently.

To tackle further general cases with more words 𝑘 > 2
and higher 𝑛 > 3-grams, we need to understand how con-
volution ★ behaves over 𝑛-gram tensor and which algebra
is suitable to understand such tensor operations.
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