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Abstract
Document alignment is necessary for the hierarchical

mining [1, 2], which aligns documents across source and
target languages within the same web domain. Several
high-precision sentence embedding-based methods have
been developed, such as TK-PERT [3] and Optimal Trans-
port (OT) [4, 5]. However, given the massive scale of
web mining data, both accuracy and speed must be consid-
ered. In this paper, we propose a cross-lingual sentence-
level Bidirectional Maxsim score (BiMax) for computing
doc-to-doc similarity, to improve efficiency compared to
the OT method. Meanwhile, we also conduct a compre-
hensive analysis to investigate the performance of current
state-of-the-art multilingual sentence embedding models.

1 Introduction
Document alignment is the task of finding parallel doc-

ument pairs, which are identified as translations of each
other, within a collection of documents obtained through
web crawling. There are four mainstream approaches:
URL matching [6, 7], bilingual lexicon [8, 9], machine
translation [10, 11], sentence embedding [4, 3, 5, 12].

Wang et al. [13] proposed the overlapping fixed-Length
segmentation (OFLS) as an alternative to sentence-based
segmentation (SBS) for generating embeddings. When ap-
plied to Mean-Pool, TK-PERT [3], and OT [4, 5], this strat-
egy led to speed and accuracy improvements. Among these
methods, OT achieves the highest recall on the WMT16
bilingual document alignment shared task based on the
LaBSE model [14]. However, the computation of OT in-
herently involves an optimization process, necessitating
multiple iterative operations at the algorithmic level. This
results in high computational complexity, limiting its per-

formance in terms of speed. Furthermore, as the number
of document segments increases, the processing speed of
OT tends to decrease.

Thus, we propose the Bidirectional MaxSim score (Bi-
Max), which matches the maximum similarity between a
given segment and the opposed segment collection (e.g., a
given source segment and target segment collection) and
then sums and averages the similarity scores. The im-
plementation is computationally efficient, requiring only a
single similarity matrix computation followed by two max-
pooling operations. This idea is inspired by the MaxSim
Score in ColBERT [15, 16], which employs a late interac-
tion mechanism to reduce the computational cost between
the query and passage by calculating only the maximum
similarity for each token in the query relative to the tokens
in the passage. We extend this score to the sentence level
and make it bidirectional.

Additionally, we evaluate combinations of state-of-the-
art embedding models (i.e., models that perform well in
tasks such as bitext mining and STS) with various seg-
mentation strategies and document alignment methods on
the small-scale Ja-En MnRN dataset [13], aiming to find
suitable models and methods for different scenarios.

2 Related Work
Currently, there are four mainstream approaches to doc-

ument alignment. The first involves simply calculating
similarity based on the URLs of the documents [6, 7]. The
second uses a bag-of-words or bag-of-ngrams representa-
tion of the document contents, leveraging a bilingual lexi-
con for computation [17, 8, 9]. The third approach employs
a Neural Machine Translation (NMT) model to translate
documents into the same language, followed by similar-
ity calculations using ngram-based metrics (e.g., BLEU,
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ChrF) [18, 10, 11]. The fourth approach utilizes multi-
lingual pre-trained embedding models to map documents
into a shared vector space, where similarity is determined
by calculating the distances between vectors [4, 3, 5, 12].
In the WMT16 bilingual document alignment shared task
[19], numerous techniques and system tools were proposed
to align cross-lingual document pairs. However, due to the
limitations of technology at the time, all efforts focused
on the first three approaches mentioned above, with no
exploration of embedding-based methods.

With the proposal and development of pre-trained mul-
tilingual sentence embedding models (e.g., LASER [20],
mSBERT [21, 22], LaBSE [14]), which map sentences
from different languages into a shared multilingual vec-
tor space, bitext mining (i.e., matching translation pairs)
and Semantic Textual Similarity (STS) calculation have
become feasible. This progress also facilitates represent-
ing documents using segment embeddings and computing
document pair similarities via vector-based methods.

Thompson and Koehn [3] introduced TK-PERT, a
method that assigns weights to sentences using regionally
emphasized windows derived from a modified PERT distri-
bution [23] to form document feature vectors. Building on
this, Sannigrahi et al. [12] evaluated TK-PERT using three
multilingual sentence embedding models: LASER, mS-
BERT, and LaBSE. Optimal Transport (OT) was also ap-
plied in cross-lingual document alignment, evolving from
word level with Word Movers’ Distance (WMD) [24] to
sentence level with Sentence Movers’ Distance [4, 5].
Wang et al. [13] proposed overlapping fixed-length seg-
mentation (OFLS) instead of sentence-based segmenta-
tion (SBS) for the embedding step, improving in both accu-
racy and speed when replicating previous works. However,
their work is limited to using only the LaBSE model and
does not explore new document alignment methods.

3 Method
Unlike the MaxSim method utilized in the late interac-

tion of ColBERT [15, 16], which uses the query’s hidden
word embeddings to search for the most similar token in
the passage undirectionally, we apply it to sentence-level
as the Bidirectional MaxSim Score (BiMax), introducing
the following key modifications: (1) transforming from
monolingual to cross-lingual, (2) shifting from word-level
embeddings to sentence-level embeddings and (3) moving

from one-sided maximum similarity matching to a bidirec-
tional approach.

3.1 Bidirectional MaxSim Score

We define the source document set as D𝑆 and the target
document set as D𝑇 . Following the research of Thompson
and Koehn [3], we adopt a 2-stage approach to consider the
D𝑆 × D𝑇 possible document pairs:

1. Candidate Generation: We first use Mean-Pool or
TK-PERT method to generate a single feature vector
for each document, and then employ Faiss Search [25]
to retrieve𝐾 target documents as potential matches for
each source document.

2. Candidate Re-ranking: We re-rank the D𝑆×𝐾 pairs
using a more accurate but slower and sometimes more
memory-intensive scoring method, such as OT and
our proposed BiMax.

Let 𝑠𝑖 for 𝑖 ∈ {0, ..., 𝑁𝑆 − 1} be the 𝑁𝑆 segments in a
given source document 𝑆 and 𝑡 𝑗 for 𝑗 ∈ {0, ..., 𝑁𝑇 − 1} be
the 𝑁𝑇 segments in a given target document 𝑇 . The BiMax
Score is defined as:

MaxSim(𝑆, 𝑇) = 1
𝑁𝑆

𝑁𝑆∑
𝑖=1

max
𝑡∈𝑇

Sim(𝑠𝑖 , 𝑡) (1a)

BiMax(𝑆, 𝑇) = 1
2
(MaxSim(𝑆, 𝑇) + MaxSim(𝑇, 𝑆)) (1b)

where Sim(𝑠, 𝑗) represents for the similarity score. In this
work, we use a pre-trained multilingual sentence embed-
ding model to map the source segment 𝑠 and the target
segment 𝑡 into the same vector space, producing embed-
dings 𝐸𝑠 and 𝐸𝑡 , and then adopt their cosine similarity
𝑐𝑜𝑠(𝐸𝑠 , 𝐸𝑡 ) as the similarity score.

4 Analysis on the MnRN Dataset

We use the small-scale MnRN dataset [13], which con-
tains 232 Japanese documents, 931 English documents,
and 263 gold pairs1）within four web domains, to con-
duct the analysis under various sentence embedding mod-
els, two segmentation strategies, SBS2）and OFLS3）, and
four document alignment methods, focusing on three main
points: (1) which models are suitable (or unsuitable) for

1） Because the English documents contain duplicates, the number of
gold pairs exceeds that of the Japanese documents.

2） Sentence-based Segmentation (SBS): split a document into non-
overlapping sentences using delimiters such as line breaks or periods.

3） Overlapping Fixed-Length Segmentation (OFLS): split a docu-
ment into segments through a fixed-length sliding window, with a
proportion of overlap between adjacent segments.
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Table 1 The results for comparing SBS and OFLS under each embedding model on the Ja-En MnRN dataset, where“FL”represents
for fixed-length,“OR” represents for overlapping rate. For each model and the four document alignment methods, we underline and
bold the result that achieves the higher F1 score or shorter embedding time under SBS or OFLS.

Strategies & Models
Embedding Models

(a) LaBSE (b) LEALLA-large (c)
paraphrase-multi-
MiniLM-L12-v2

(d)
distiluse-base-
multi-cased-v2

(e) LASER-2 (f)
BGE M3

(dense only)
(g) jina-embeddings-v3

Experiments (F1 Score ↑ / Embed. Time (sec.) ↓)

SBS

Mean-Pool 0.8362 / 131.27s 0.3750 / 60.54s 0.7543 / 59.00s 0.8362 / 80.40s 0.5862 / 543.10s 0.8448 / 637.01s 0.8362 / 133.72s
TK-PERT 0.8448 / 206.19s 0.5129 / 158.54s 0.7845 / 158.38s 0.8147 / 164.89s 0.5819 / 652.32s 0.8362 / 745.57s 0.8706 / 247.22s
OT w/Mean 0.8448 / 131.58s 0.4525 / 60.87s 0.7845 / 58.98s 0.8448 / 80.46s 0.4784 / 543.87s 0.8621 / 642.20s 0.8578 / 132.73s
BiMax w/Mean 0.8922 / 131.47s 0.4655 / 60.83s 0.8319 / 59.35s 0.9052 / 80.49s 0.7414 / 543.61s 0.9181 / 640.27s 0.9310 / 134.52s

OFLS
(FL 30, OR 0.5)

Mean-Pool 0.8707 / 71.59s 0.3836 / 52.76s 0.7759 / 49.06s 0.8233 / 49.23s 0.5302 / 1246.64s 0.8491 / 119.38s 0.7716 / 380.98s
TK-PERT 0.9483 / 569.54s 0.6034 / 548.93s 0.8707 / 578.17s 0.8966 / 591.48s 0.8134 / 1860.80s 0.9224 / 650.14s 0.9310 / 912.74s
OT w/Mean 0.9569 / 71.33s 0.4782 / 52.47s 0.8578 / 49.08s 0.9397 / 49.10s 0.4354 / 1223.61s 0.8879 / 119.36s 0.8966 / 379.59s
BiMax w/Mean 0.9612 / 71.14s 0.5348 / 52.93s 0.9052 / 49.09s 0.9569 / 49.32s 0.7845 / 1205.91s 0.9483 / 119.36s 0.9267 / 381.05s

OFLS segmentation, (2) how different document align-
ment methods perform under each model, and (3) which
combination of these three factors yields the best results.

The reasons for selecting embedding models and the
detailed model settings are recorded in Appendix A and B.

4.1 Performance Comparison

(1) Which models are suitable (or unsuitable) for OFLS
segmentation?
As shown in Table 1, for models (a)∼(d), and (f), OFLS
demonstrates similar characteristics, with an improvement
in the F1 score in most cases and an acceleration in em-
bedding speed (except for TK-PERT) compared to the SBS
segmentation. However, for the LASER-2 model, although
the use of OFLS improves the accuracy of the TK-PERT
and BiMax methods, its performance on Mean-Pool and
OT remains poor. Additionally, the embedding speed is
obviously reduced, which may be attributed to the chain
structure of LSTM, due to the rise in the total number of
tokens resulting from overlapping segments in OFLS.

Specifically, the jina-embeddings-v3 model achieves a
relatively high F1 score compared to other models when
using the SBS segmentation, with embedding time com-
parable to LaBSE. Although employing the OFLS strategy
may further enhance accuracy, the embedding time for
the jina-embeddings-v3 model, unlike other Transformer-
based models, becomes longer, which may be caused by the
use of RoPE [26] and FlashAttention 2 [27] mechanisms.

(2) How different document alignment methods perform
under each model?
We select four well-performing models from Table 1,
LaBSE, distiluse-base-multi-cased-v2, BGE M3, and jina-
embeddings-v3, for further comparison of document align-
ment methods. As described in Table 3, firstly, as a com-

mon feature across all models and segmentation strategies,
the embedding time required by the Mean-Pool method is
less than TK-PERT. However, in terms of similarity com-
putation, Mean-Pool and TK-PERT cost similarly, as they
only involve cosine similarity calculations under sufficient
GPU memory. Furthermore, due to the limited scale of the
MnRN dataset, the times for similarity calculation under
different segmentation strategies and embedding models
do not differ significantly for the four document alignment
methods. Thus, we present these times in ranges in Ta-
ble 2, while Appendix A provides detailed results. It can
be observed that the time required for BiMax to calculate
similarity scores is shorter than OT.

Table 2 The time consumption for calculating similarity.
Methods Mean-Pool TK-PERT OT w/Mean BiMax w/Mean
Sim Time (sec.) ↓ 2.06s∼3.03s 2.09∼2.97s 12.66s∼24.57s 2.12s∼3.23s

Subsequently, across the segmentation strategies for
each model in Table 3, BiMax achieves the best perfor-
mance in most cases, except for the jina-embeddings-v3
model employing OFLS with fixed-length 30 for segmen-
tation. The method yielding the second-highest accuracy
is generally OT or TK-PERT, but OT shows a higher sen-
sitivity to the window length setting using OFLS.
Table 3 The results for comparing the four document align-
ment methods under each embedding model and the segmentation
strategy. For each segmentation strategy under each model, we
highlight the best and second among the document alignment
methods. (Comparisons are conducted for each cell of the table.)
Strategies & Models LaBSE

distiluse-base-
multi-cased-v2

BGE M3 jina-embed-v3

Experiments (F1 Score ↑ / Embed. Time (sec.) ↓)

SBS

Mean-Pool 0.8362 / 131.27s 0.8362 / 80.40s 0.8448 / 637.01s 0.8362 / 133.72s
TK-PERT 0.8448 / 206.19s 0.8147 / 164.89s 0.8362 / 745.57s 0.8706 / 247.22s
OT w/Mean 0.8448 / 131.58s 0.8448 / 80.46s 0.8621 / 642.20s 0.8578 / 132.73s
BiMax w/Mean 0.8922 / 131.47s 0.9052 / 80.49s 0.9181 / 640.27s 0.9310 / 134.52s

OFLS
(30, 0.5)

Mean-Pool 0.8707 / 71.59s 0.8233 / 49.23s 0.8491 / 119.38s 0.7716 / 380.98s
TK-PERT 0.9483 / 569.54s 0.8966 / 591.48s 0.9224 / 650.14s 0.9310 / 912.74s
OT w/Mean 0.9569 / 71.33s 0.9397 / 49.10s 0.8879 / 119.36s 0.8966 / 379.59s
BiMax w/Mean 0.9612 / 71.14s 0.9569 / 49.32s 0.9483 / 119.36s 0.9267 / 381.05s

OFLS
(100, 0.5)

Mean-Pool 0.8663 / 67.85s 0.8577 / 46.93s 0.8663 / 103.28s 0.7845 / 169.16s
TK-PERT 0.8966 / 208.19s 0.9052 / 209.13s 0.8836 / 261.69s 0.8836 / 329.34s
OT w/Mean 0.8922 / 68.35s 0.8707 / 47.01s 0.8405 / 103.16s 0.8491 / 167.97s
BiMax w/Mean 0.9440 / 68.32s 0.9353 / 47.02s 0.9224 / 103.19s 0.9397 / 168.55s
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(3) Which combination of these three factors yields the best
results?
Furthermore, we record the maximum memory consump-
tion4）of the four well-performing models in Table 4.
Table 4 The maximum memory consumption of the four em-
bedding models.

Strategies & Models LaBSE
distiluse-base-
multi-cased-v2

BGE M3 jina-embed-v3

Memory Consumption: Embedding (MB.)↓

SBS
Mean-Pool 4455.33 7267.58 57924.36 7036.57
TK-PERT 4478.97 7291.22 57948.21 7052.71

OFLS
(30, 0.5)

Meam-Pool 2758.95 1685.84 2338.35 3203.90
TK-PERT 2782.64 1715.25 2370.38 3235.67

OFLS
(100, 0.5)

Mean-Pool 2541.99 1670.95 1731.11 2450.66
TK-PERT 2565.64 1694.64 1762.69 2482.38

Overall, when using OFLS, LaBSE demonstrates supe-
rior accuracy compared to other models, and among the
document alignment methods, according to Table 3, Bi-
Max achieves the best performance. The model closest
to LaBSE under OFLS, distiluse-base-multilingual-cased-
v2, while lower in accuracy, offers advantages in terms of
speed and memory efficiency.

Regarding SBS, the jina-embeddings-v3 model attains
higher accuracy while demonstrating a speed comparable
to LaBSE, performing the best in the BiMax method. Al-
though the BGE M3 model also achieves a relatively high
F1 score, its memory consumption indicates inefficiency
in handling the long-text challenge caused by SBS.

In addition, in the case of low-resource language pairs,
where regardless of the embedding model, high embedding
accuracy cannot be fully guaranteed, if LaBSE covers the
languages, the LaBSE + OFLS + BiMax approach, which
achieves fast speed while maintaining a relatively high level
of accuracy, may be a recommended method.

5 Experiment on the WMT16 doc-
　ument alignment shared task

To test the BiMax method further, we conduct experiments
on the WMT16 document alignment task. For a compar-
ison with the work of Wang et al. [13], we set the fixed-
length to 100 and the overlapping rate to 0.5 for OFLS,
while using the LaBSE model for embedding generation.

The results are presented in Table 5. Similarly, under the
OFLS segmentation, the BiMax method improves 0.3% to
2.4% recall than SBS. Compared with the results of Wang
et al. [13], the BiMax method demonstrates slightly higher

4） Since the memory used to calculate similarity scores using OT and
BiMax does not exceed the memory required during the embedding
process, we limit our comparisons to Mean-Pool and TK-PERT.

accuracy than the OT and TK-PERT methods under SBS.
However, the opposite trend is observed when employing
OFLS. Although the BiMax method cannot comprehen-
sively outperform OT and TK-PERT in terms of recall, we
have shown its efficiency in speed in Section 4.1. Further-
more, rather than solely prioritizing precision, this research
emphasizes the efficiency of the method. While there is
still room for improvement in the accuracy of the BiMax
score, such as incorporating weights (e.g., LIDF) for the
maximum similarity score of each segment, we opt for
a lightweight approach to minimize additional computa-
tional overhead and time consumption.
Table 5 The results of soft recall on WMT16 test data, com-
pared to previous best-reported results, where the fixed-length is
100, the overlapping rate is 0.5 for OFLS.

Method Segment
Strategy Recall

Wang et al. [13] (LaBSE)
Mean-Pool SBS 82.6%
Mean-Pool OFLS 92.6%
TK-PERT SBS 95.2%
TK-PERT OFLS 96.3%
OT w/Mean-Pool SBS 90.6%
OT w/Mean-Pool OFLS 93.7%
OT w/TK-PERT SBS 95.6%
OT w/TK-PERT OFLS 96.8%
This work (LaBSE)
BiMax w/Mean-Pool SBS 90.7%
BiMax w/Mean-Pool OFLS 93.1%
BiMax w/TK-PERT SBS 95.8%
BiMax w/TK-PERT OFLS 96.1%

6 Conclusion
This paper introduces a novel and efficient BiMax Score

for the document alignment task, reducing computational
complexity compared to OT. However, while BiMax shows
the best performance across almost all models and various
segmentation strategies on the small-scale MnRN dataset,
results from the WMT16 document alignment task reveal
that we cannot definitively assert BiMax’s accuracy sur-
passes OT or TK-PERT. Instead, we advocate for BiMax
primarily for its efficiency in scenarios such as process-
ing large-scale web-crawled data or low-resource language
pairs. In these cases, according to our analysis experi-
ments, the LaBSE + OFLS + BiMax approach is recom-
mended, which outperforms all of the other combinations.
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Table 6 The results from various sentence embedding models, segmentation strategies, and document alignment methods on the
MnRN dataset. For the F1 Score, we highlight the best , second, third, and fourth best across the models for each combination
of segmentation strategy and document method. For embedding time, we also highlight the best , second, third, and fourth best .
Moreover, we put the highest F1 scores achieved by each model under each segmentation strategy in bold.

Info. & Methods
Embedding Models

(a) LaBSE (b) LEALLA-large (c)
paraphrase-multi-
MiniLM-L12-v2

(d)
distiluse-base-
multi-cased-v2

(e)
paraphrase-multi-

mpnet-base-v2
(f) LASER-2 (g) multi-e5-large (h)

BGE M3
(dense only)

(i) jina-embeddings-v3

Model Info.
Suitable Task Bitext. Bitext. STS STS STS Bitext. Multi-task Multi-task Multi-task
#Param. 471M 147M 118M 135M 278M 43M 560M 567M 572M
#Dim. 768 256 384 512 768 1024 1024 1024 1024
#Lang. Multi. Multi. Multi. Multi. Multi. Mono. Multi. Multi. Multi.
#Arch. Transformer Transformer Transformer Transformer Transformer LSTM Transformer Transformer Transformer

Experiments (F1 Score ↑ / Embed. Time (sec.) ↓ / Sim. Time (sec.) ↓)

SBS

Mean-Pool 0.8362 / 131.27s / 2.12s 0.3750 / 60.54s / 2.07s 0.7543 / 59.00s / 2.06s 0.8362 / 80.40s / 2.10s 0.7716 / 148.60s / 2.16s 0.5862 / 543.10s / 2.12s 0.7802 / 457.94s / 2.12s 0.8448 / 637.01s / 3.03s 0.8362 / 133.72s / 2.38s
TK-PERT 0.8448 / 206.19s / 2.18s 0.5129 / 158.54s / 2.09s 0.7845 / 158.38s / 2.17s 0.8147 / 164.89s / 2.12s 0.7931 / 223.87s / 2.11s 0.5819 / 652.32s / 2.11s 0.7845 / 517.99s / 2.16s 0.8362 / 745.57s / 2.97s 0.8706 / 247.22s / 2.47s
OT w/Mean 0.8448 / 131.58s / 24.57s 0.4525 / 60.87s / 18.96s 0.7845 / 58.98s / 18.39s 0.8448 / 80.46s / 21.87s 0.7974 / 149.07s / 19.83s 0.4784 / 543.87s / 17.24s 0.8060 / 461.78s / 17.13s 0.8621 / 642.20s / 19.32s 0.8578 / 132.73s / 19.60s
BiMax w/Mean 0.8922 / 131.47s / 2.19s 0.4655 / 60.83s / 2.13s 0.8319 / 59.35s / 2.12s 0.9052 / 80.49s / 2.16s 0.8577 / 148.40s / 2.19s 0.7414 / 543.61s / 2.20s 0.8750 / 462.17s / 2.50s 0.9181 / 640.27s / 3.23s 0.9310 / 134.52s / 2.40s

OFLS
(FL 30, OR 0.5)

Mean-Pool 0.8707 / 71.59s / 2.12s 0.3836 / 52.76s / 2.14s 0.7759 / 49.06s / 2.06s 0.8233 / 49.23s / 2.13s 0.7112 / 74.56s / 2.10s 0.5302 / 1246.64s / 2.11s 0.7543 / 259.61s / 2.14s 0.8491 / 119.38s / 2.92s 0.7716 / 380.98s / 2.43s
TK-PERT 0.9483 / 569.54s / 2.10s 0.6034 / 548.93s / 2.10s 0.8707 / 578.17s / 2.18s 0.8966 / 591.48s / 2.12s 0.8793 / 599.66s / 2.10s 0.8134 / 1860.80s / 2.12s 0.8534 / 745.20s / 2.15s 0.9224 / 650.14s / 2.88s 0.9310 / 912.74s / 2.33s
OT w/Mean 0.9569 / 71.33s / 14.37s 0.4782 / 52.47s / 14.37s 0.8578 / 49.08s / 13.34s 0.9397 / 49.10s / 14.17s 0.8922 / 74.31s / 13.24s 0.4354 / 1223.61s / 14.48s 0.7801 / 258.70s / 13.91s 0.8879 / 119.36s / 14.67s 0.8966 / 379.59s /14.14s
BiMax w/Mean 0.9612 / 71.14s / 2.19s 0.5348 / 52.93s / 2.23s 0.9052 / 49.09s / 2.21s 0.9569 / 49.32s / 2.25s 0.9138 / 74.47s / 2.23s 0.7845 / 1205.91s / 2.24s 0.9181 / 258.35s / 2.28s 0.9483 / 119.36s / 3.08s 0.9267 / 381.05s / 2.74s

OFLS
(FL 100, OR 0.5)

Mean-Pool 0.8663 / 67.85s / 2.09s 0.4138 / 42.03s / 2.15s 0.7413 / 42.03s / 2.07s 0.8577 / 46.93s / 2.10s 0.7672 / 73.84s / 2.09s 0.5517 / 1053.51s / 2.10s 0.7500 / 221.28s / 2.17s 0.8663 / 103.28s / 2.91s 0.7845 / 169.16s / 2.35s
TK-PERT 0.8966 / 208.19s / 2.10s 0.5905 / 195.43s / 2.13s 0.8233 / 200.45s / 2.07s 0.9052 / 209.13s / 2.14s 0.8491 / 221.24s / 2.11s 0.7543 / 1257.60s / 2.10s 0.8491 / 322.00s / 2.16s 0.8836 / 261.69s / 2.93s 0.8836 / 329.34s / 2.39s
OT w/Mean 0.8922 / 68.35s / 13.69s 0.4741 / 42.02s / 13.58s 0.8190 / 42.05s / 13.37s 0.8707 / 47.01s / 13.91s 0.8319 / 74.31s / 12.89s 0.4440 / 1056.15s / 12.67s 0.7586 / 221.19s / 12.28s 0.8405 / 103.16s / 13.38s 0.8491 / 167.97s / 12.66s
BiMax w/Mean 0.9440 / 68.32s / 2.13s 0.5431 / 42.09s / 2.19s 0.9009 / 42.06s / 2.11s 0.9353 / 47.02s / 2.18s 0.8663 / 74.23s / 2.14s 0.7629 / 1050.41s / 2.25s 0.9009 / 221.45s / 2.27s 0.9224 / 103.19s / 3.00 s 0.9397 / 168.55s / 2.41s

A Embedding Model Selection

In Section 4, first, we choose the LaBSE [14] and
LASER-2 models [28], which are frequently used for the
bitext mining task, and also include a knowledge-distilled,
light-weight variant of LaBSE, the LEALLA model [29].
Subsequently, we employ two representative multilin-
gual models from the Sentence Transformers library5）:
paraphrase-multilingual-MiniLM-L12-v2, and distiluse-
base-multilingual-cased-v2 [21], which perform strongly
on the STS task. Finally, considering the MTEB bench-
mark [30], which encompasses several embedding tasks,
we select two models that currently achieve state-of-the-art
performance on the leaderboard6）, which are capable of
processing long sentences and suitable for multi-task sce-
narios: BGE M3 [31], and jina-embeddings-v3 [32]. How-
ever, additionally, we also consider the multilingual-e5-
large model [33] and the paraphrase-multilingual-mpnet-
base-v2 model [21]. The results are presented in Table 6.

B Embedding Model Settings

We maintain the default configurations for all models, as
these configurations represent the most general use cases.
However, to establish method consistency, we implement
a standardization protocol, converting all vectors to fp32
format and utilizing tensors after the embedding process.

Meanwhile, given that all models except LASER-2 are
derived from Hugging Face7）, we can achieve substan-

5） https://huggingface.co/
sentence-transformers

6） https://huggingface.co/spaces/mteb/
leaderboard

7） https://huggingface.co/

tial uniformity in the Python library and code framework,
thereby facilitating meaningful comparisons of inference
speeds across models. However, due to the LASER-2
model’s different library and code program, absolute par-
ity in comparative speed analysis between LASER-2 and
other models cannot be established.

Because of the multifunctionality of the three multi-task
models, we specify distinct usage. For the multi-e5-large
model, which can leverage a prefix (either “query:” or
“passage:”) as the start of the text, we find that appending
“query:”to both the source and target produces the highest
accuracy. Regarding the BGE M3 model, which provides
three functions for generating different scores, we elect to
use only its dense embedding as output. Finally, for the
jina-embeddings-v3 model, which offers a selection among
various LoRA adapters [34] depending on the desired task,
we choose the“text-matching” task.

C Experiment Settings

We follow the experimental settings of Wang et al. [13],
configuring the hyper-parameters for the WMT16 docu-
ment alignment task and the MnRN dataset in the TK-
PERT method as 𝐽 = 16, 𝛾 = 20 and 𝐽 = 8, 𝛾 = 16.

For evaluation of the WMT16 document alignment
shared task, we adhered to previous work [19, 3, 12, 13]
via a “soft” recall metric, which assigns credit to doc-
ument pairs if either the English or French document (but
not both) deviates from the reference document pair by
less than 5%, based on text edit distance. For the MnRN
dataset, the F1 Score is used for evaluation.

All experiments are conducted on two A6000 GPUs and
one H100 GPU.
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