言い換え文を用いた機械翻訳の学習データの増加

松本武尊¹ 村上仁一²

¹ 鳥取大学大学院持続性社会創生学科学研究科

² 鳥取大学工学部

m23j4054m@edu.tottori-u.ac.jp

murakami@tottori-u.ac.jp

概要

NMT において,言い換え文を利用して,学習文 を増加する手法がある.本論文では,外部コーパス を利用せずに言い換え文を生成する.そして,生成 された言い換え文を用いて学習データを増加させ, 機械翻訳の精度向上を試みた.その結果,自動評価 結果では,わずかに精度が向上した.しかし,人手 評価結果では学習文に言い換え文を追加しても精度 に変化が見られなかった.

1 はじめに

ニューラル機械翻訳の精度を向上させるために は、大量の学習データが必要となる.しかし、大量 の学習データを収集するには、大きなコストがかか る.そこで、言い換え文を用いて学習データを増加 させる手法がある.

本研究では,外部コーパスを利用せずに,折り返し翻訳を用いて言い換え文を生成し,学習データを 増加させる.先行研究[1]と同様に折り返し翻訳を 行い元の文と折り返し翻訳をされた文を比較する. そして,2の文が一致した場合のみ言い換え生成を 行う.このことにより,翻訳誤りが減少し,高い精 度の疑似データを作成することができると考えられ る.そして,生成された言い換え文を用いて学習文 を増加させ,機械翻訳の精度を調査する.

2 関連研究

2.1 言い換え生成

学習データを増幅させるために,言い換え生成を 行う.言い換え生成には様々な手法がある.先行研 究[1]では,日本語の言い換え生成を行った.NMT を用いて折り返し翻訳を行い,翻訳結果が一致した 場合のみ言い換え生成をした.また,言い換えの取 得数を増加させるために出力候補数を4候補にした 4Best, 乱数による出力の違いを考慮した4システム で実験を行った.表1に生成された言い換え文とラ ンダムに選択された言い換え文100文に対する人手 評価の結果を示す.

表1 生成された日本語の言い換え文と人手評価結果

	1Best	4Best	4system
言い換え文	25,003	134,574	362,971
100 文の正解率(%)	85	85	81

2.2 単言語コーパスを用いた学習データの 増加

学習データを増幅させるために単言語コーパスを 用いる手法がある.Sennrich[2]らは,ターゲット言 語の単一言語コーパスはフレーズベースの統計的機 械翻訳の流暢性を高めるための重要な役割を果たし ていることから,NMT でも単言語コーパスを利用 した.

単一言語コーパスを逆翻訳と組み合わせることに より,追加の並列学習データとして扱った.その結 果,機械翻訳の精度の大幅な改善が見られた.

3 提案手法

本研究では,日英翻訳を基本としている.提案手 法として,学習データにターゲット言語の言い換え 文を追加した翻訳モデルとする.つまり,英語の言 い換え文を追加する.また,ベースラインは言い換 え文を学習データに追加していない翻訳モデルとす る.表2に学習データの追加例を示す.

なお,言い換え生成には,ベースラインの学習 データを用いている.そのため,外部コーパスを利 用していない.

ベースライン	この豆腐は悪く なっている	This tofu has gone bad .		
追加する英語の 言い換え文	この豆腐は悪く なっている	This tofu has become bad.		
ベースライン	我々 の 努力 は 報 わ れた 。	Our efforts suc- ceeded.		
追加する英語の 言い換え文	我々 の 努力 は 報 わ れた 。	Our efforts were rewarded.		

表2 学習文の追加例

4 実験

4.1 実験手順

本研究では以下の手順で実験を行う

- ベースラインとして,言い換え文を利用しない 翻訳モデルを作成する.
- 2. 提案手法として,英語の言い換え文を学習デー タに追加し,翻訳モデルを作成する.
- 3. 1,2 で作成した翻訳モデルを用いてテストデー タで翻訳を行い自動評価を行う.

4.2 実験条件

本実験の実験条件を示す.NMTの学習·翻訳には OpenNMT-py[3]のバージョン 3.1.1 を用いて,デフォルトの設定で実験を行う.

4.3 対訳コーパス

本研究では,電子辞書などから抽出した日英単文 対訳コーパスを用いる[4].表3に日英対訳コーパ スの一部を示す.また,追加する英語の言い換え文 の一部を表4に示し,表5に生成された言い換え文 とランダムに選択された言い換え文10文に対する 人手評価結果を示す.

衣3 日央刈訳コーハスの1例			
日本語文	英語文		
警察はその犯人を追 い詰めた。	The police tracked down the criminal .		
私 は 毎夜 12 時 ま で 英語 の 勉強 を し ています。	I study English every night until twelve.		
評議 会 は この ほか 軍 改革 委員 会 の 創 設 などを決め、同日 午後 閉幕 した 。	The Council also decided to set up a military re- form committee , and the meeting ended the same afternoon .		

表3 日英対訳コーパスの例

表4 英語の言い換え文の例

入力文	言い換え文
There is a park on the south of our school .	There is a park on the south of the school.
All of the machines are working smoothly.	All the machines are working smoothly.
The library has a great many books .	There are a lot of books in the library .

表5 生成された英語の言い換え文と人手評価結果

	1Best	4Best	4system
言い換え文	14,818	188,256	485,936
10 文の正解率(%)	90	90	80

5 結果

5.1 ターゲット言語の学習データの追加量

本実験では,言い換え文の量を3つに変化させて 実験を行った.表6に日英翻訳におけるターゲット 言語である英語の言い換え文を追加したときの学習 データの数を示す.

表6 日英翻訳における学習データの量

対訳コーパス	言い換え文
163,188	14,818
163,188	188,256
163,188	485,936

5.2 自動翻訳結果

表 7 にテストデータ 16,328 文における BLEU によ る自動評価結果を示す.

表7 日英翻訳における自動評価結果

	BLEU	METEOR	TER	RIBES
ベースライン	0.190	0.471	0.594	0.771
163,188 + 14,818	0.194	0.474	0.619	0.776
163,188 + 188,256	0.193	0.475	0.620	0.775
163,188 + 485,936	0.194	0.475	0.622	0.776

表7より,英語の言い換え文を追加することによ りBLEU値は少し増加した.しかし,追加する言い 換え文の量を増加させてもBLEU値の変化がわずか であることが確認できる.

5.3 人手評価結果

表8に英語の言い換え文14,818文を追加したとき と,ベースラインをランダムに選択された100文で 人手で比較を行った結果を示す.

表8 ベースラインとの比較結果

ベースライン 〇	163,188 + 14,818 ()	差なし
17	18	65

表8より,ベースラインと英語の言い換え文 14.818 文を追加した場合を比較すると差がないこと が確認できる.

5.4 出力例

表9に人手評価で提案手法のほうが良い例を示 す.また,表10に言い換え文を追加したほうが良 い例を示す.

表 9 提案手法が良かった出力例			
入力文1	政府 は この 事業 の 具体 的 な 内容 を 示した 。		
参照文	The government presented some of the features of the project that are concrete.		
ベースライン	The Government showed spe- cific concrete material of this project.		
163,188 + 14,818	The government indicated the specific details of this enterprise		
入力文 2	彼ら は その 考え方 に 迷わ さ れた 。		
参照文	They were led astray by that way of thinking .		
ベースライン	They were struck by the idea.		
163,188 + 14,818	They were captured by the idea.		
入力文3	太陽が堂々と現われた。		
参照文	The sun appeared majestically .		
ベースライン	The sun appeared full .		
163,188 + 14,818	The sun appeared brilliantly .		

表9より、言い換え文を追加することにより、間 違って翻訳されていた単語が正しい単語に置き換 わっていることが確認できる.

表 10 ベースラインが良かった出力例			
入力文1	捕虜たちが逃亡を図った。		
参照文	The captives attempted to make their escape .		
ベースライン	The captives made their escape .		
163,188 + 14,818	The captives went on the escape		
入力文2	その店の前に駐車した。		
参照文	She parked her car in front of the store.		
ベースライン	I parked in front of the store.		
163,188 + 14,818	He parked himself in front of the store.		
入力文3	しばしば 寒暖計 が 零 度 を 下回る 。		
参照文	The thermometer often goes be- low zero .		
ベースライン	The thermometer is often below zero.		
163,188 + 14,818	The mercury is often over zero.		

表 10 より, 言い換え文を追加することにより, ベースラインでは正しく翻訳されていた単語が別の 単語へ置き換わっていたり、不要な単語が増加して いることが確認できる.

6 考察

6.1 ソース言語の言い換えの追加

表7より,ターゲットである英語の言い換え文を 追加しても, BLEU 値は, あまり増加しなかった. そこで,ソース言語である日本語の言い換え文を追 加したときの日英翻訳の精度を調査する.

6.1.1 ソース言語の学習データの追加量

表 11 に日英翻訳におけるソース言語である日本 語の言い換え文を追加したときの学習データの量を 示す.

日	本語の言い換え文	ヨデータ量	
	対訳コーパス	言い換え文	
	163,188	25,003	
	163,188	134,574	
	163,188	362,971	
	E	対訳コーパス 163,188 163,188	163,188 134,574

6.1.2 自動評価結果

表 12 にテストデータ 16,328 文における自動評価 結果を示す.

表 12 より,日本語の言い換え文を追加すると,

	BLEU	METEOR	TER	RIBES	
163,188 + 25,003	0.191	0.468	0.623	0.770	
163,188 + 134,574	0.189	0.468	0.614	0.774	
163,188 + 362,971	0.186	0.463	0.621	0.770	

表12 日本語の言い換え文を追加した自動評価結果

BLEU 値がわずかに減少したことが確認できる.

6.1.3 出力例

表13に出力例を示す.

夜13 ソー ス言語の言い換えを追加したときの面力例	
入力文1	私 は 電車 事故 で 足留め を 食った 。
参照文	I was stranded as a result of the train accident.
ベースライン	I was killed in the train accident
163,188 + 25,003	I was misled in the train accident
163,188 + 134,574	I was detained in a train accident in a train accident.
163,188 + 362,971	I was moved by a train accident in a train accident .
入力文2	富士山 は 昔 から たくさん の 絵描き に 描か れ た 山 だ 。
参照文	Mount Fuji has been painted by numerous artists since ancient times.
ベースライン	Mount Fuji is a long reflection of many (unk) from olden coun- tries.
163,188 + 25,003	Mount Fuji has been the resort of a lot of senders-off from olden times.
163,188 + 134,574	Mount Fuji has been (unk) in many mountains since long ago
163,188 + 362,971	Mount Fuji is a mountain re- sponsible for many people from olden times .

表13 ソース言語の言い換えを追加したときの出力例

7 おわりに

本研究では,学習データに言い換え文を追加する ことにより,学習データを増加させ,機械翻訳の精 度向上を試みた.結果より,ターゲット言語である 英語の言い換え文を追加した場合では, BLEU 値は わずかに向上した.

精度がわずかしか向上しなかった大きな原因と して,未知語が影響していると考えられる.そこで 今後として,外部の単一コーパスを用いることによ り,機械翻訳の精度の調査を行いたい.

6.2 精度が向上しない原因

表7と12より,日本語,英語の言い換え文を追 加しても機械翻訳の精度にはあまり差がなかった. 以下に精度が向上しなかった原因として考えられる ことを示す.

6.2.1 未知語

本研究では,外部コーパスを利用していない.そ のため,ベースラインと比較すると,学習データに おける単語の出現回数は変化する.しかし,単語の 種類は増加しない.よって,ベースラインで未知語

> This work is licensed by the author(s) under CC BY 4.0 -2351 -(https://creativecommons.org/licenses/by/4.0/).

となっている単語は言い換え文を追加しても未知 語のままである.例として,表13の入力文2では ベースラインで未知語として出力されている部分 は,言い換え文を追加しても未知語として出力され ていたり,不適切な単語に置き換わっている.

6.2.2 不適切な言い換え文

学習文に追加した言い換え文には,不適切な言い 換え文が含まれている.そのため,ベースラインで 翻訳が成功していた文が,不適切な言い換え文が追 加することにより翻訳が失敗する場合がある.例と して,表10の入力文2では,言い換え文を追加する と" parked "の目的語が不適切な単語になっている.

6.3 今後の課題

本研究では,外部コーパスを用いていないため, 翻訳の情報量は増加していない.そのため,精度が 向上していないと考える.そこで今後として,単語 の情報量を増加させるために,外部の単一コーパス を用いて言い換え文を作成して,学習データに追加 することを検討したい.

参考文献

- 松本武尊,村上仁一.折り返し翻訳を利用した言い換え生成.言語処理学会第29回年次大会,2023.
- [2] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709, 2015.
- [3] OpenNMT. https://opennmt.net/OpenNMT-py/.
- [4] 村上仁一,藤波進.日本語と英語の対訳文対の収集と 著作権の考察.第一回コーパス日本語学ワークショッ プ, pp. 119–130, 2012.
- [5] 田中慎太郎,飯間ほか. 往復翻訳を教師とした言 い換え生成モデルによる高速テキストデータ拡張. 人工知能学会全国大会論文集第37回(2023), pp. 2E5GS604-2E5GS604. 一般社団法人人工知能学会, 2023.
- [6] Jianing Zhou and Suma Bhat. Paraphrase generation: A survey of the state of the art. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 5075–5086, 2021.
- [7] 杉山普, 吉永直樹ほか. 逆翻訳によるデータ拡張に基づく文脈考慮型ニューラル機械翻訳. 研究報告自然言語処理 (NL), Vol. 2019, No. 14, pp. 1–5, 2019.
- [8] 矢野貴大,村上仁一. ニューラル機械翻訳に乱数が与 える影響. 言語処理学会第 27 回年次大会, 2021.
- [9] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.