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Abstract
Large Language Models (LLMs) are widely employed.

However, their susceptibility to adversarial attacks poses
a significant security concern. In this paper, we focus
on LLM-based visual dialog systems and delve into their
sensitivity in the aspect of both visual attack and textual
attack. Our work aims to investigate the robustness of
these systems, and give researchers the understanding of
the security challenges that LLMs may face in practical
applications.

1 Introduction
In recent years, the field of natural language process-

ing has witnessed a surge in the utilization of Large Lan-
guage Models (LLMs) [1] and their multi-modal extensions
[2, 3, 4], underscoring their pivotal role in various applica-
tions. In contrast to non-LLM-based multi-modal systems,
such as ViLBERT-based and CLIP-based, the LLM-based
approaches often have more powerful abilities for contex-
tual understanding and transfer learning because of their
large-scale training. Despite the success of LLM-based
multi-modal systems, an escalating concern surrounds the
security robustness [5] of these models, particularly in the
face of adversarial attacks [6].

Adversarial attacks [7], characterized by purposeful ma-
nipulations of input data, exploit the inherent vulnerabili-
ties in model architectures, posing formidable challenges
to the reliability and security of LLMs. In multi-modal
scenarios, the system may exhibit varying sensitivities to
inputs from different modalities. Attackers can exploit this
by selectively targeting the most sensitive modality during
adversarial attacks to achieve more effective manipulation.
It is necessary to consider the adversarial robustness of the
system on multiple modalities simultaneously to obtain a
comprehensive evaluation.

In response to this security risk and insufficient research
in LLM-based multi-modal systems, our work directs its
focus toward the specific domain of LLM-based visual di-
alog systems [8]. Given that Chatbot [9] represents a foun-
dational function of the application of LLMs, our work
aims to evaluate their robustness boundaries. To emu-
late real-world scenarios, we introduce a zero-shot setting
system tailored for the visual dialog task. This system
serves to evaluate the robustness of LLM-based multi-
modal systems against adversarial attacks, incorporating
assessments in both text and visual modalities. Specifi-
cally, we scrutinize robustness through Fast Gradient Sign
Method (FGSM) attacks [7], introducing adversarial noise
to images, and coreference attacks [10], manipulating the
textual input.

Our contributions are summarised as below:

1. To reflect the real robustness of LLMs, we construct
the LLMs-based visual dialog system in zero-shot set-
tings.

2. Our successful execution of FGSM and coreference
attacks sheds light on the nuanced vulnerabilities in-
herent in LLM-based visual dialog systems.

2 Related Work

2.1 Visual Dialog Task

Visual dialog [8] has been introduced as an extended task
of Visual Question Answering (VQA) [11]. In Visual dia-
log, the system is tasked with responding to a sequence of
interconnected questions, leveraging both an image and a
dialog history. Prior works have explored attention mecha-
nisms [12] that account for the intricate interactions among
modalities of the image, dialog history, and question. Some
investigations [13] have delved into uncovering the seman-
tic structures within the dialog through graph neural net-
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Figure 1 The proposed structure of LLM-based zero-shot visual dialog system. We evaluate its adversarial robustness against FGSM
attack and coreference attack. Example of coreference attack is shown in Table 1.

works. Our work takes into account the excellent zero-shot
generalization capability of LLMs, and leverages this capa-
bility to facilitate interactions and inference across modal-
ities within the visual dialog system.
2.2 Adversarial Attacks on Multi-modal

Models
In the domain of multi-modal models, a few studies have

recently delved into examining their susceptibility to ad-
versarial attacks. In [14], this work attacked textual inputs
using the methods of BERT-Attack and TextFooler, provid-
ing the first investigation into the robustness of visual dialog
models against textual attacks. In [15], this work demon-
strated that imperceptible attacks on images, altering the
output of an image caption model, can be exploited by ma-
licious content providers to harm users. In [10], both image
and text-level attacks were imposed on a ViLBERT-based
visual dialog system, evaluating the adversarial robustness
across multiple modalities. Our evaluation builds on these
insights, concentrating on LLM-based multi-modal mod-
els and demonstrating the effectiveness of the attacks on
the visual dialog task.

3 Task Definition
For the visual dialog task, we define the input image

as 𝑉 , the dialog history as 𝐻 = {𝐻1, 𝐻2, ..., 𝐻𝑡 } where 𝑡

means dialog turns and 𝐻𝑡 = {𝑄𝑡 , 𝐴𝑡 } means the question
𝑄𝑡 and answer 𝐴𝑡 in one turn, and the final question as
𝑄0. The objective of this task is to enable the model to
select the appropriate answer 𝐴𝑛𝑠 from a set containing
𝑁 candidate answers {𝐴𝑛𝑠1, 𝐴𝑛𝑠2, ..., 𝐴𝑛𝑠𝑁 } based on the
input information.

As for the attacks, we define the visual attack as VA(·)

and the textual attack as TA(·). After attacking, we input
the perturbed image 𝑉 ′ = VA(𝑉) or the perturbed dialog
history 𝐻′ = TA(𝐻) into the model, and expected the
answer 𝐴𝑛𝑠′ should be different from the ground truth
answer.

4 Method
4.1 LLM-based Zero-shot Visual Dialog

Sysytem
The proposed structure is shown in Figure 1.
Selection for LLM Considering the advanced perfor-

mance and open-source implementation, we choose BLIP-
2 [16] as the base model in the zero-shot visual dialog
system, which is a recent multi-modal model that gained
significant attention. BLIP-2 seamlessly integrates vision
and language understanding by combining a pre-trained
visual model with a LLM. Consequently, it possesses the
capability to handle both visual and textual inputs, leading
to the generation of coherent natural language outputs.

Zero-shot Setting We construct a zero-shot system for
the evaluation of adversarial robustness. The zero-shot
setting aims to closely mimic real-world application sce-
narios, where models may encounter previously unseen
categories or tasks. This configuration better simulates
the robustness observed in practical use, providing a more
realistic assessment of the model’s performance.

Scoring of Answers To select the appropriate answer
from the candidate set, we calculate the log-likelihood
score [8] of all the candidates because our visual dialog
system contains a generative decoder. In the evaluation
phase, the rank of the candidate set is given by their log-
likelihood scores.
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4.2 Adversarial Visual Attack

We make the assumption that an attacker possesses the
capability to introduce minor perturbations to the visual
inputs of the model. Additionally, we assume that the
attacker has unrestricted access to all model weights.

In this setting, the Fast Gradient Sign Method [7] is an
attack method that introduces perturbations to visual inputs
guided by the gradients of the loss concerning the visual
inputs:

FGSM(𝑉) = 𝑉 + 𝜖 · sign(∇𝑉𝐿𝑜𝑠𝑠(𝑉, 𝑙𝑎𝑏𝑒𝑙)), (1)

where 𝑉 and 𝑙𝑎𝑏𝑒𝑙 represent the visual inputs and their
corresponding ground-truth labels, respectively. ∇𝐿𝑜𝑠𝑠(·)
means the gradient of the model. The hyperparameter 𝜖
is utilized to modulate the intensity of perturbations. And
the sign(·) is a mathematical function that returns the sign
of a real number. Specifically, it maps a positive number
to 1, a negative number to -1, and zero to 0. The sign(·)
function is denoted as follows:

sign(𝑥) =


1 if 𝑥 > 0

−1 if 𝑥 < 0

0 if 𝑥 = 0

(2)

However, in contrast to the aforementioned configura-
tion, each question in the visual dialog task may have one
or more pertinent answers within the list of candidate an-
swers. This is because some candidate answers may be
semantically identical (e.g. ’yeah’ and ’yes’). So the val-
idation dataset of visual dialog task is annotated with the
relevance score [8] between each of the candidate answers
and ground truth, which ranges from 0 to 1. Therefore, we
modify the FGSM attack as follows:

FGSM(𝑉) = 𝑉+

𝜖 · sign(
𝑁∑
𝑛=1

𝑅𝑒𝑙𝑛 · ∇𝑉𝐿𝑜𝑠𝑠((𝑉, 𝐻,𝑄), 𝐴𝑛𝑠𝑛)),

(3)

where 𝐴𝑛𝑠𝑛 means the 𝑛−𝑡ℎ candidate answer, 𝑅𝑒𝑙𝑛 means
the relevent score between ground truth answer and the 𝑛−
𝑡ℎ candidate answer. Equation signifies that the gradients
of the loss with respect to all relevant answers are taken
into account in the FGSM attack.

Table 1 Example of adversarial textual attack. The red words
indicate that the target word for the attack is adults which is
replaced with grownup after the attack.

Original Text Attacked Text
Q: what is in the background? Q: what is in the background?
A: trees and buildings A: trees and buildings
Q: how many are adults? Q: how many are grownup?
A: 1 adults A: 1 grownup

4.3 Adversarial Textual Attack

We also investigate adversarial robustness against textual
attacks. As shown in Table 1, we employ the coreference
attack [10], wherein noun phrases in the dialog history
are replaced with their synonyms to deceive the models.
Coreference means that the target words and the replace-
ment words not only have semantic similarity but also refer
to the same object. In this method, we utilize an off-the-
shelf neural coreference resolution tool [17] to identify
words in the dialog history referring to objects mentioned
in a given question. We perform a greedy substitution of
words with their synonyms, selecting those with the mini-
mum cosine distance in the counter-fitting word embedding
space [18]. After going through these steps, we obtained
the attacked text samples.

5 Experiments

5.1 Dataset

VisDial v1.0 [8] is a version of the Visual Dialog dataset,
which is widely used in the visual dialog task. It consists
of a collection of dialogues between humans discussing
images. The dataset is designed to facilitate research on
the intersection of computer vision and natural language
processing, particularly in tasks involving dialog under-
standing and visual reasoning. The VisDial v1.0 dataset
contains 123k, 2k, and 8k dialogs as train, validation, and
test split. In our zero-shot setting, we only use the valida-
tion set.

5.2 Implementation

As for the BLIP-2 model, in our work, we opted for CLIP
(ViT-L/14) [19] as the Image Encoder and the decoder-
based OPT model (2.7B and 6.7B) [20] as the LLM.
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Table 2 Results on LLM-based zero-shot visual dialog system
without attacks. The ViLBERT-based, CLIP-based and FRO-
MAGe-based approaches are the existing methods, while two
BLIP-2-based approaches are our baselines. We emphasize the
current state-of-the-art results.

w/o attacks
Base Model NDCG MRR R@1 R@5 R@10
ViLBERT [21] 11.6 6.9 2.6 7.2 11.3
CLIP (Vit-L/14) [19] 10.9 8.5 3.1 8.7 15.9
FROMAGe [22] 16.5 22.0 17.6 20.1 25.1
BLIP-2 (OPT2.7B) 13.9 20.8 15.9 18.4 23.2
BLIP-2 (OPT6.7B) 14.2 20.9 16.2 18.6 23.8

5.3 Metrics

We adhere to the standardized evaluation protocol intro-
duced in [8]. Generative tasks for visual dialog models are
appraised using retrieval-based evaluation metrics, includ-
ing normalized discounted cumulative gain (NDCG), mean
reciprocal rank (MRR) and recall@k (R@k, k = 1, 5, 10).
Each dialogue comprises a list of 100 answer candidates
for every question, with one ground-truth answer included
in the candidates. The model arranges the answer candi-
dates based on log-likelihood scores and is subsequently
evaluated using the aforementioned three metrics. NDCG
considers all relevant answers from the candidate set, while
MRR and R@k take into account the rank of the single
ground-truth answer. So, NDCG is considered the pri-
mary evaluation metric in current works.
5.4 Results on LLM-based Zero-shot Vi-

sual Dialog System
Table 2 shows the results on our proposed system without

adversarial attacks in contrast with other zero-shot visual
dialog systems. In details, BLIP-2 has 188M trainable
parameters in the pretraining stage, while ViLBERT has
114M, CLIP has 300M and FROMAGe has 5.5M. The
performance and trainable parameters of BLIP-2-based
model are close to the existing zero-shot visual dialog mod-
els, which can illustrate that the structure of BLIP-2-based
models is reasonable, and can be used in the attack process.

5.5 Results on Adversarial Visual Attack

Table 3 shows the results on LLM-based zero-shot vi-
sual dialog system with the visual attack. Hyperparameter
𝜖 adjusts the intensity of perturbations. As the 𝜖 rises,
the perturbation applied to the image becomes stronger
and NDCG drops, which means that the FGSM attack is
successful on the BLIP-2-based model. In the ViLBERT-

Table 3 Results on LLM-based zero-shot visual dialog sys-
tem with adversarial visual attack. We adjust the perturbation
strength by varying the hyperparameter 𝜖 , observing changes in
the model’s performance.

NDCG
Base Model 𝜖 = 0 𝜖 = 0.01 𝜖 = 0.03 𝜖 = 0.05
BLIP-2 (OPT2.7b) 13.9 13.8 13.8 13.8
Model 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4
BLIP-2 (OPT2.7b) 13.8 13.8 13.7 13.7
Model 𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7
BLIP-2 (OPT2.7b) 13.7 13.6 13.5

Table 4 Results on LLM-based zero-shot visual dialog system
with adversarial textual attack.

NDCG
Base Model w/o attacks w/ textual attack
BLIP-2 (OPT2.7b) 13.9 16.8

based visual dialog model [10], FGSM usually causes a
drop by 30%. In our work, the slight drop in NDCG can be
attributed to the robustness of BLIP-2 because of the pre-
training on multiple vision datasets such as LAION [23].

5.6 Results on Adversarial Textual Attack

Table 4 shows the results on LLM-based zero-shot vi-
sual dialog system with the coreference attack. In the
ViLBERT-based visual dialog model [10], NDCG usually
drops by 4%. But in our work, NDCG improves. We
hypothesize that, based on the language understanding and
reasoning capabilities of LLMs, the substitution of synony-
mous words in the text contributes to the semantic comple-
tion of the dialog history. This indicates that LLM-based
models are robust against our coreference attack.

6 Conclusion
In conclusion, our study underscores the widespread

utilization of LLMs while highlighting a critical security
concern due to their vulnerability to adversarial attacks.
The identified weaknesses in security extend not only to
LLMs but also to LLM-based multi-modal models. Specif-
ically focusing on LLM-based visual dialog systems, our
research finds their sensitivity to visual attacks, and the op-
posite impact to textual attacks. Future work could involve
the design of more advanced adversarial attacks to attain
stronger visual attacks and more effective textual attacks.
By developing novel adversarial strategies, researchers can
gain a deeper understanding of the security boundary in
LLM-based visual dialog systems, contributing to robust
defense mechanisms.
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