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Abstract

The Contrastive Language-Image Pre-training (CLIP)
model is based on plain textual inputs, leading to a chal-
lenge in handling structural ambiguity residing inside a
text. This paper examines the effectiveness of semantic
graphs, the graph format representation converted from
syntax trees, using a graph convolutional network (GCN)
as the CLIP model’s input to address this challenge. Addi-
tionally, we leverage the integrated gradient methodology
to analyse how semantic graphs are interpreted within the
model’s architecture.

1 Introduction

Contrastive Language Image Pre-training (CLIP) [1] has
demonstrated its effectiveness in Vision and Language
(V&L) tasks like few-shot and zero-shot classification,
leveraging large text-image pair datasets, applied to mod-
els like Stable Diffusion [2], one of the state-of-the-art
text-to-image generation models.

However, CLIP model’s heavy dependence on plain tex-
tual inputs poses challenges in capturing semantic nuances
from structural information in input texts. Among these
challenges, we focus on structural ambiguity, where a sen-
tence can be interpreted in multiple syntactic ways. In
Figure 1 (A), the position of the bag can differ, either on a
chair or in the man’s arms, based on the syntactic structure.
This raises a concern for the CLIP model’s ability to clearly
discriminate ambiguous vision and language pairs to meet
the user’s intention.

In the realm of linguistics, structural information of lan-
guage is expressed using linguistic formalism, a system-
atic representation of the lingual structure. Our previous
research [3] attempted to insert the syntax tree, the most
representative type of formalism, into the CLIP model’s
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Text : Danny approached the chair with a bag

N WP

NP NP

NNP VBD oT NN IN DT NN
Danny  approached the chait  with a bag.

NNP VBD oT NN IN DT NN
Danny  approached the chait  with a bag

(A) Structural Ambiguity Example

s hed
(NP (NNP Danny) ) approache
(VP (VBD approached) Arg0 Argl
(NP (DT the) (NN chair) )
(PP (IN with) .
) (NP (DT a) (NN bag) ) Danny Arg2  chair
) ) bag

(B) Textualised Syntax Tree (C) Semantic Graph

Figure 1 (A) : Multiple meanings of the text “Danny ap-
proached the chair with a bag.” based on the syntactic structure,
(B) : Textualised syntax tree from the same input text, (C) : Se-
mantic graph representing the same meaning with (B).

text encoder by simply treating it as a text consisting of
words, POS tags, and brackets (Figure 1 (B)), outperform-
ing the conventional CLIP model in image discrimination.
While successful, textualised syntax trees had the follow-

ing problems:

» With additional brackets and POS tags, the syntax
tree’s sequence length had potential threats to exceed
the CLIP model’s limitation.

* Tokenisation was performed in an unintentional man-

ner, leading to wrong inference.

In this paper, we try another formalism called semantic
graphs (Figure 1 (C)). Semantic graphs abstract away the
core meaning of a sentence by representation of predicates
(e.g. verbs) and arguments within (nouns). We expect the
semantic graphs to be free from the problems above hence

leading to better discrimination performance. We try out a
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Graph Convolutional Network (GCN) [4] as the encoding
strategy and undergo the analysis of the model’s inference
principle.

2 Related Studies

2.1 Limitations of the CLIP model’s Plain
Textual Inputs

While our research isn’t directly related with this aspect,
the CLIP model’s ability to correctly associate images with
the right arrangements of words, known as Visio-Linguistic
Compositionality, is reported to be poor in the current CLIP
model [5]. As a response, there have been attempts to
deal with this challenge by leveraging scene graphs, which
shows the visual structural information between the objects
appearing inside the image [6, 7]. Our research is different

from these research in following points:

* Ambiguity is a subject beyond compositionality. Even
if the compositionality is solved, disambiguation re-
mains a challenge.

* While scene graph processing is usually done by in-
dividually encoding partial triplets of objects and re-
lation, our graph methodology considers the overall
flow through nodes and edges.

* Instead of visual structural information, ours employ

the linguistic structural information.

2.2 GCN for Natural Language Processing

GCN has been applied in the field of Natural Lan-
guage Processing by encoding graph-structured linguistic
formalisms. Examples include syntax trees based on de-
pendency grammar [8, 9], semantic graphs [10, 11], etc.
Our proposal is profoundly based on this idea, by con-
structing a semantic graph from a sentence then passing it
through GCN.

3 Proposed Method

The overview of our proposal is illustrated in Figure 2.
Compared with the conventional CLIP model, the proposal
has two key distinctions. First, during the fine-tuning pro-
cess, we keep the CLIP model’s vision component param-
eters fixed, since the extensively pre-trained vision encoder
is expected to yield high performance without extra train-
ing. Second, out model presumes a graph parser transform-
ing the textual input into the graph, and a GCN network to
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Figure 2 Overview of the proposal. The sentence is trans-
formed into a semantic graph and then encoded through the GCN
encoder.
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acquire characteristic vectors from the graph. We combine
these vectors with the text vectors independently acquired
from the conventional CLIP’s text encoder, through con-
catenation and linear projection. As the graph parser, we
employ HanLP [12], and the pre-trained CLIP vision and
text encoders are from Huggingfacel).

Our GCN is based on Morris et al.’s work [13], where
a single node vector undergoes an update according to the
formula (from the kth layer to the (k+1)th):

X{H'l = Wle + Wz( €ji -x]') (1)

jeNeighbours (i)
This formulation involves two essential weight matrices:
W) for the self-recurrent computation and W, for managing

the weights of neighbouring edges from the node (e; ;).
4 Experiments

There are two research questions our experiments aims

to observe:

 Can integrating semantic graphs into the CLIP model
enhance its ability to discriminate vision and language
pairs with structural ambiguity? (Section 4.1)

* Does leveraging semantic graphs result in sound dis-
crimination quality even in general scenarios irrele-

vant to ambiguity? (Section 4.2)
We compare three models as follows:
* CLIPpp,in : Conventional CLIP model with plain text
inputs, which is our baseline.

* CLIPgee as text :

ture fine-tuned with linearised textual syntax trees as

Conventional CLIP model architec-

inputs[3], which is the other baseline.
* CLIPgcN : GCN applied to a semantic graph, which

is our proposal.

1) https://huggingface.co/openai/clip-vit-base-patch32
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text-to-image

image-to-text

Data Model Accuracy (%) Recall@l Recall@5 Recall@10 Recall@l Recall@5 Recall@10

CLIPpain 50.0 0.264 0.708 0.905 0.270 0.753 0.893

LAVA  CLIPyee as text 74.72 0.405 0.753 0.882 0.388 0.803 0.899
CLIPgenN 77.53 0.298 0.657 0.775 0.365 0.657 0.775
CLIPpain NA 0.391 0.654 0.765 0.408 0.680 0.787

COCO  CLIPyee as text NA 0.371 0.645 0.761 0.410 0.683 0.795
CLIPgeN NA 0.198 0.477 0.617 0.234 0.519 0.661
Table 1  Experimental results divided based on datasets. CLIPpy,in and CLIPyee a5 text are the baselines.

4.1 Structural Disambiguation Experiment

The focus of this experiment is to leverage the seman-
tic graphs to accurately discriminate vision and language
pairs with structural ambiguity. As a dataset, we employ
Language And Vision Ambiguities (LAVA) corpus [14],
which consists of structurally ambiguous texts with two
possible interpretations, two corresponding images, two
corresponding syntax trees, and two corresponding seman-
tic parsed information. Since linguistic formalisms are
already offered in the corpus, we don’t use the parser pre-
viously mentioned in this experiment. Evaluation metrics
we employ are as follows:

Discrimination Accuracy evaluates the model’s
ability to successfully discriminate ambiguous vision and
language pairs. At every time step, the model is given
two vision and language pairs sharing the same plain text
but with different interpretations from structural ambigu-
ity. We count the correctly matched pairs, and the accuracy
is computed as the ratio of the number of correct matches
over the total data pairs.

Recall@K evaluates the model’s performance in the
context of image retrieval, where we search for the right
pair for the input from all the test data. With the values of
K set as 1, 5, and 10 in advance, for each K, we count the
number of inputs for which the correct match was found
within the top K search results. We evaluate using this

metric bidirectionally—text-to-image and image-to-text.

4.2 Generality Evaluation Experiment

The objective of this experiment is to assess the model’s
performance in diverse scenarios, aiming to determine its
ability to generalize across various contexts without be-
ing excessively tailored to specific datasets, such as LAVA.

To explore this question, we use Microsoft COCO [15], a
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dataset equipped with a substantial number of vision and
language pairs depicting various situations and contexts.
This dataset has no language data other than plain texts,
hence we use HanLLP parser mentioned in Section 3. As
for the metrics, we use Recall@K, but not the discrimi-
nation accuracy since this experiment has little to do with

ambiguity.
5 Experimental Results

5.1 Structural Disambiguation Experimen-
tal Results

The upper part in Table 1 shows the disambiguation ex-
perimental results on LAVA corpus. In assessing discrim-
ination accuracy, our proposal outperformed the baselines,
with 77.53 in accuracy, suggesting the proposal’s effec-
tiveness. On the other hand, in Recall @K, CLIP e as text
shows largely the best results. And except for the case
where K equals 1, our proposal is even outperformed by
the CLIPplain.
5.2 Generality Evaluation Experimental

Results

The bottom part in Table 1 shows the generality evalu-
tion results on COCO dataset. In this section, our proposal
showed the worst performance. While there has been a
decline across almost every aspect compared with LAVA,
our proposal showed the worst decline. One notable thing
is the performance of CLIPyee 45 text, Of Which the perfor-
mance decline is less severe than that of our proposal.
Also, CLIPyee a5 text Shows the best performance in image-
to-text direction. Considering as well the CLIPyee g5 text’s
best performance across the Recall@K in Section 5.1, one
could speculate this performance owing to the model’s
preservation of the conventional CLIP model’s pre-trained
structure.

Overall, our proposal showed the best performance in
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0.988

Inference
Probability

0.546

Inference
Probability

Input Text : Danny approached the chair with a yellow bag

Figure 3 Discriminating examples where the scenario features
a single person. Both graphs are generated from the same sen-
tence, presented in the bottom. The numbers on the red arrows
indicate the model’s inference probability, and nodes enclosed
in red circles highlight the actual differences between the top
and bottom graphs. Two different arrows represent the model’s
matching and the actual right pair. In this case, both inferences
are successful, with the top graph of the high probability and the
bottom graph of the low probability.

discrimination accuracy but the lowest in generality. This
discrepancy in performance of the proposal necessitates

further analysis.
6 Analysis

For our GCN proposal model, we employed the Inte-
grated Gradients method [16], which involves interpolat-
ing between the input and an empty zero baseline input of
the same size, accumulating gradient values for each edge.

The focus of our analysis is to see if the model’s attention
is given to the adequate parts of the graph in disambigua-
tion using the LAVA corpus. The difference between two
different graphs from the same sentence is enclosed within
red circles in Figure 3 and 4.

Figure 3 shows the successful discrimination examples
where the scenario covers a single person. The difference
in graphs appear in meaning as the position of the bag,
whether on the chair on in the man’s arms. In Figure 3
it is evident that the model is concentrating on the right
part hence leading to successful matching. Additionally,
it is notable that the bottom example shows less attention
which is demonstrated by the less thickness of edges, given
compared with that given to the upper example, and the in-
ference probability is significantly lower (0.546). This sug-
gests the attribution of semantic graph in its right intention
in discrimination tasks.

However, there was a problem observed in scenarios

covering two people as shown in Figure 4. In the sen-
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Input Text : Danny looked at Andrei having a yellow chair

Figure 4 Discriminating examples where the scenario features
two people. The Figure structure is as same as that of Figure 3.
Both graphs are matched to the right images.

tence “Danny looked at Andrei having a yellow chair.”,
the difference in meaning is ‘who’ has the bag, Andrei
or Danny. As the LAVA corpus assigns distinct personal
names, treating them as proper nouns instead of providing
general absolute characteristics like appearance descrip-
tions, it becomes challenging to distinguish individuals,
such as determining who is Andrei and who is Danny, even
with the assistance of semantic graphs. Consequently, in
scenarios involving more than two people, the model be-
came excessively tailored to precisely differentiate between
these pairs. In Figure 4, while the matching is successful
with high inference probability, the upper example doesn’t
show the model’s attention given to the right part to focus
on. Throughout the text examples, the model usually chose
an extreme strategy to focus on every edge in one pair and
pay attention to random few edges in the other. Overall, it
could be said that while leveraging semantic graphs showed
successful discrimination performance both in quantitative
and qualitative manners for certain cases, innate noise in-
cluded in the data hindered the model’s correct inference,
calling out a need for a more robust dataset.

7 Conclusion

This paper introduces the integration of semantic graphs
into the CLIP model to enhance its discrimination perfor-
mance for disambiguation. Our experiments demonstrate
superior accuracy, highlighting the proposal’s strength.
However, limitations, such as the model’s generality and
potential impact of noisy parsed linguistic formalism, re-
main unexplored. The exclusive focus on CLIP raises ques-
tions about the generalisability of our findings to other Vi-
sion and Language models. Future research will address

these limitations to further refine and extend our approach.
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