
Improving Zero-Shot Dependency Parsing
by Unsupervised Learning

Jiannan Mao1,2　Chenchen Ding2　Hour Kaing2　Hideki Tanaka2

　Masao Utiyama2　Tadahiro Matsumoto1

1Gifu University, Gifu, Japan　2ASTREC, UCRI, NICT, Japan
　{mao, tad}@mat.info.gifu-u.ac.jp

　{chenchen.ding, hour kaing, hideki.tanaka, mutiyama}@nict.go.jp

Abstract
UDify [1] is a multilingual and multi-task parser fine-

tuned on mBERT. It has demonstrated notable perfor-
mance, even on few-shot languages. However, its perfor-
mance saturates early and decreases gradually as training
progresses with zero-shot languages. This work focuses on
this phenomenon, which has not yet been sufficiently stud-
ied. Data augmentation methods based on unsupervised
learning on monolingual data were designed to transform a
zero-shot case into an artificial few-shot case. Experiments
were conducted on the Breton language as a typical case
study. For the Breton language, the unlabeled attachment
score was significantly improved. The parsing accuracies
for other languages were not noticeably affected.

1 Introduction
A dependency parser can be efficiently trained on large

treebanks when available [2, 3]. For low-resource lan-
guages with limited treebanks, multilingual modeling has
emerged as an efficient solution in which cross-lingual in-
formation is leveraged to compensate for the lack of data
on specific languages. Many research [4, 5] have demon-
strated that the performance in part-of-speech (POS) or
dependency parsing can be improved by pairing languages
with similar. This multilingual approach reduces the cost
of training multiple models for a language group [6].

UDify [1] is a multi-task self-attention network fine-
tuned on multilingual BERT (mBERT) [7] pre-trained em-
beddings, capable of producing annotations for any tree-
bank from Universal Dependencies treebanks [8]. UDify
exhibits strong and consistent performance across a wide
range of languages and tasks such as lemmatization, POS

Figure 1 Change in the UAS of a model during the training
process on the Breton test set for both the baselines (Baseline and
Self) and the proposed method (Unsup).

tags, and dependency parsing. In addition to UDify, there
are several comparable state-of-the-art methods[5, 9]. A
problem highlighted by several related studies is the sub-
stantial discrepancy in the performance of these methods in
zero-shot scenarios, even with identical training strategies,
datasets, models, and evaluation methods [9, 10].

This work investigates the underlying reason for the phe-
nomenon regarding zero-shot cases by exhaustively exam-
ining the epochs during model training. To resolve this
problem, a data augmentation strategy is proposed to im-
prove the performance and stability of UDify. Specifically,
the original UDify provides an initialization based on un-
supervised learning for a zero-shot language; the generated
results by unsupervised learning are then incorporated into
UDify’s training set so that the zero-shot language is con-
verted into an artificial few-shot language.

Experiments on the Breton are taken as a case study.
Unsupervised learning-based data augmentation efficiently
boosted the unlabeled attachment score (UAS) from 68.4%
to 76.1%. Furthermore, the parsing accuracy for other
languages did not decrease, which suggests that the overall
robustness of multilingualism processing is still retained.
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2 Background

2.1 UDify

The UDify model jointly predicts lemmas, POS tags,
dependency structures, and etc. The pre-trained mBERT
model is a self-attention network with 12 encoder layers.
It is used in the UDify model for cross-lingual learning
without additional tags to distinguish the languages. In ad-
dition, a strategy similar to that of ELMo [11] is adopted,
where a weighted sum of the outputs of all layers is com-
puted as follows and fed to a task-specific classifier:

𝑒𝑡𝑎𝑠𝑘𝑗 =
∑

𝑖 𝑚𝐵𝐸𝑅𝑇𝑖 𝑗 .

Here, 𝑒𝑡𝑎𝑠𝑘 denotes the contextual output embeddings
for tasks such as the dependency parse, 𝑚𝐵𝐸𝑅𝑇𝑖 𝑗 denotes
the 𝑚𝐵𝐸𝑅𝑇 representation for layer 𝑖 at token position 𝑗 .

In the task involving dependency structures, mBERT’s
subword tokenization process inputs words into multiple
subword units. Despite this, only the embeddings 𝑒𝑡𝑎𝑠𝑘𝑗

of the first subword unit are used, serving as input to the
graph-based bi-affine attention classifier [2]. The resulting
outputs are combined using bi-affine attention to produce
a probability distribution of the arc-head for each word.
Finally, the dependency tree is decoded using the Chu–
Liu/Edmonds algorithm [12, 13].

2.2 Unsupervised Dependency Learning

Adhering to the properties of dependency syntax [14], a
general unsupervised algorithm for projective N-gram de-
pendency learning (Unsupervised-Dep) was described in
Ding [15]. This method employs a CYK-style chart and dy-
namic programming to construct the optimal dependency
tree, grounded in the non-constituent concepts of complete-
link and complete-sequence. Due to the significant time
complexity associated with N-gram learning, this study
concentrates on bi-gram for practical applicability.

When considering the bi-gram, the directionality of a
pair of words is set by the dependency relation, with
(𝑤𝑖→𝑤 𝑗 ) indicating a rightward relation and (𝑤𝑖←𝑤 𝑗 ) in-
dicating a leftward one. The bi-gram unsupervised learn-
ing update probabilities 𝑃(𝑤𝑖→𝑤 𝑗 ) and 𝑃(𝑤𝑖←𝑤 𝑗 ) are
calculated using the Inside–Outside algorithm [16]. Fi-
nally, the Viterbi algorithm [17] is employed to determine
the optimal tree construction.

3 Proposed Method

3.1 Motivation

In UDify’s training, the dependency structures of zero-
shot languages are learned through transfer learning. In
contrast to the high-resource and few-shot languages, early
saturation in the accuracy of the dependency parsing is
exhibited during the learning process of all low-resource
languages. The best performance was typically achieved
around the 8th training epoch, as shown in Figure 2.

Figure 2 Changes in the UAS of zero-shot languages during
the training process.

This phenomenon has been noticed [5, 9, 10] but not yet
systematically investigated to the best of our knowledge.
Given that the accuracy of dependency parsing for zero-
shot languages tends to decrease as training progresses, the
number of epochs becomes a crucial factor in the inconsis-
tency observed in related work.

Considering the observed positive correlation between
parsing accuracy and the number of training epochs for
high-resource and few-shot languages, it is somewhat un-
expected to encounter a substantial discrepancy between
the optimal and final testing results for zero-shot tasks.
This calls for specialized strategies to bridge this gap. In
the following, we introduce a data augmentation technique
grounded on Unsupervised-Dep, and aims to reduce the
performance gap and thus improve the effectiveness of UD-
ify in dependency parsing for zero-shot languages.

3.2 Unsupervised Augmentation

To apply Unsupervised-Dep in data augmentation, it is
vital to ensure the generated data aligns with the UD for-
mat. Therefore, in addition to dependency arc-heads, other
types of data must be created and combined with the results
from Unsupervised-Dep. Given its high time complexity
of 𝑂 (𝑛3), making the common practice in the original
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methods, which start training from a random probability,
somewhat inefficient. To circumvent this, we decided to
leverage the parsing results from UDify to initialize the
probabilities. Despite the potential decrease in UDify’s
accuracy on zero-shot languages during its training, the fi-
nal results consistently outperform those from other models
[8, 3], providing a robust foundation for our initialization
approach.

We initiate the process with the raw corpus, 𝐷𝑎𝑡𝑎,
input into the trained UDify by the original UD tree-
banks, to generate the dependency arc-heads, represented
as 𝐷𝐸𝑃𝑎𝑟𝑐, and POS, lemmas, etc., denoted as 𝑂𝑡ℎ𝑒𝑟𝑠.
Statistical computations on 𝐷𝐸𝑃𝑎𝑟𝑐 generate initial prob-
abilities 𝑃(𝑤𝑖→𝑤 𝑗 ) and 𝑃(𝑤𝑖←𝑤 𝑗 ), serving as input for
Unsupervised-Dep alongside 𝐷𝑎𝑡𝑎.

Following several iterations of training through
Unsupervised-Dep, the re-estimated 𝑃(𝑤𝑖→𝑤 𝑗 )

′ and
𝑃(𝑤𝑖←𝑤 𝑗 )

′ emerge. They become the parameters for the
Viterbi algorithm to determine the optimal dependency
arc-head as given by

𝐷𝐸𝑃
′
𝑎𝑟𝑐 = 𝑉𝑖𝑡𝑒𝑟𝑏𝑖(𝑥, 𝑃(𝑤𝑖→𝑤 𝑗 )

′
, 𝑃(𝑤𝑖←𝑤 𝑗 )

′ ) ,

where 𝐷𝐸𝑃
′
𝑎𝑟𝑐 is the tree with the highest probability for

a sentence 𝑥 from 𝐷𝑎𝑡𝑎.
We merged 𝐷𝐸𝑃

′
𝑎𝑟𝑐 with𝑂𝑡ℎ𝑒𝑟𝑠, ultimately generating

artificial data. The artificial data are then combined with
the existing UD treebanks for the subsequent training.

4 Experiments

4.1 Dataset

We selected Breton from OPUS 1）as our target zero-
shot language for the implementation of Unsupervised-
Dep. After cleaning the collected data, we obtained 99.5k
sentences, which we refer to as OPUS-br.

From this collection, we first identified a subset of 300
sentences as our test set, referred to as test300. To conduct
more detailed testing of the sentence structures generated
by Unsupervised-Dep, we later expanded this subset by
incorporating an additional 200 sentences, resulting in a
total of 500 sentences, referred to as test500. The division
of the collected data in the experiment is summarized in
Table 1. The training set is used for obtaining and updating
the probabilities. The validation set is applied to validate

1） opus.nlpl.eu

Table 1 Division of the OPUS-br into training, validation, and
test sets, and the number of words in each set.

data set #sentence #word
train 90,000 1,023,292
valid 9,000 113,066
test300 300 2,663
test500 500 4,469

the results of Unsupervised-Dep learning. The test set,
demonstrates the results of our data augmentation.

To evaluate our proposed method, we used the same
version of the UD treebank that UDify uses for our exper-
iments. During training, we concatenated all training sets,
mirroring the approach of [18]. We shuffled all sentences
before each epoch and fed the mixed batch of sentences
into the network, including sentences from any language
or treebank, whether they were original UD treebank sen-
tences or those generated through Unsupervised-Dep.

4.2 Setup

To minimize the impact of potential experimental envi-
ronmental variations [19], we follow the parameters and
re-implemented the model provided by UDify2）, which we
refer to as the Baseline. To expedite the experiment, we
implemented multi-GPU parallel training3）by modifying
UDify using Horovod [20].

For our method, we initially computed the parsing re-
sults of the training data from OPUS-br using the Base-
line. These results served as the initial probabilities for
𝑃(𝑤𝑖→𝑤 𝑗 ) and 𝑃(𝑤𝑖←𝑤 𝑗 ). These probabilities were
continuously re-estimated throughout the unsupervised
learning process of training data from OPUS-br. After the
10th training epoch, we employed the re-estimated proba-
bilities to parse the test set from OPUS-br. In multilingual
parser experiments, two different subsets of the OPUS-br
dataset were employed to refine the dependency arc-heads
generated by Unsupervised-Dep, specifically marked as
Unsup300 and Unsup500. Unsup300 integrates sentences
from the OPUS-br test300 into the UDify training set, while
Unsup500 utilizes sentences from the OPUS-br test500.

Meanwhile, inspired by Rybak [21], we conducted an
experiment using a comparative method dubbed Self300.
In this approach, we used the test300, diverging from the

2） github.com/Hyperparticle/udify
3） When parallelizing across seven V100s, replicating UDify re-

quires close to 12 days.

― 1647 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



use of Unsupervised-Dep for sentence refinement. The
sentences were directly parsed with the Baseline instead.
The parsing results were then converted into UD format,
merged with the original training set, and used for a new
round of UDify model training.

4.3 Result and Discussion

A comparison with the experimental results reported
in the original UDify study confirms that Baseline was re-
implemented successfully, as demonstrated in Table 2. The
results in this table not only indicate a significant improve-
ment in UDify’s ability to avoid the decrease in dependency
arc-head accuracy for the Breton language at the end of the
training, regardless of the proposed method that was im-
plemented but also indicate that while self300 causes only a
minor increase in the UAS score, Unsup300 and Unsup500,
which incorporate data generated from Unsupervised-Dep,
significantly augment the accuracy of the dependency arc-
head. Additionally, Figure 1 and Table 2 illustrates that,
though different datasets have minimal impact on the peak
UAS scores for Breton during training, methods Unsup300

and Unsup500 notably narrow the gap between the best and
last UAS scores, thereby enhancing training stability.

Table 2 UD scores on Breton and other languages obtained by
different methods. Rest(%) refers to the average score of UPOS,
UFeats, Lemma, and LAS in the UD scores. The UDify result
was reported by Kondratyuk [1].

Breton Other
UAS

Rest UAS Rest
last best gap

UDify 63.5 - - - - -
Baseline 68.4 76.2 -7.8 52.4 77.7 82.3
Self300 70.1 76.2 -6.1 55.3 77.7 82.3
Unsup300 75.4 76.5 -1.1 60.9 77.7 82.4
Unsup500 76.1 76.9 -0.8 61.1 77.7 82.3

Considering UDify’s role as a multilingual parser, it is
necessary to evaluate the impact of the proposed method
on other languages. To observe in detail the differences and
changes in the UAS between the Baseline and Unsup500,
we conducted tests across all treebanks and display the
results in Figure 3. From the figure, it is evident that while
Unsup500 has improved the UAS for Breton, it has had
virtually no impact on the parsing precision of dependency
constructions in other languages.

For a comprehensive comparison, the UD scores of the

Figure 3 Changes in the UAS for the Baseline and Unsup500 on
all test treebanks. The x-axis sorts the UD treebanks by the as-
cending improvement of the proposed method over the Baseline.

Breton and other languages have been compiled in Ta-
ble 2. Given that UDify must balance the loss produced
by multiple decoders during training and Rybak’s work
[21], these variations in evaluation metrics are considered
reasonable. Broadly, our data augmentation method has
almost no negative impact on other languages and tasks,
maintaining their performance levels.

Considering all results, we argue that generating training
data for zero-shot languages through the application of
the Unsupervised-Dep is both essential and effective in
multilingual modeling.

5 Conclusion
This study investigated the issue of decreased parsing ac-

curacy exhibited by UDify in zero-shot language scenarios,
despite its generally outstanding performance in few-shot
language scenarios. To address this problem, we proposed
a method that applies an unsupervised algorithm to transi-
tion a zero-shot language into a few-shot language context,
thereby effectively expanding the dataset and enhancing
the model’s learning capability.

The efficacy of our approach has been substanti-
ated through our experimental results. By incorporat-
ing sentence dependency arc-head structures produced by
Unsupervised-Dep into UDify’s training data, we achieved
a substantial improvement in UDify’s performance with
zero-shot languages. This improvement was significant
even when only a limited number of sentences, such as 300
or 500, were used. Although our constraints did not allow
for a definitive demonstration of a positive correlation be-
tween the number of sentences generated by Unsupervised-
Dep incorporated into the training data and the improve-
ment of UDify in zero-shot languages, this correlation re-
mains a possibility.

― 1648 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



References
[1] Dan Kondratyuk and Milan Straka. 75 languages, 1 model:

Parsing Universal Dependencies universally. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 2779–2795, Hong Kong,
China, November 2019. Association for Computational
Linguistics.

[2] Timothy Dozat and Christopher D. Manning. Deep biaffine
attention for neural dependency parsing. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[3] Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D.
Manning. Universal Dependency parsing from scratch. In
Proceedings of the CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pp. 160–170, Brussels, Belgium, October 2018.
Association for Computational Linguistics.

[4] Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. Many languages, one
parser. Transactions of the Association for Computa-
tional Linguistics, Vol. 4, pp. 431–444, 2016.
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