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Abstract
We introduce Uzushio — a distributed huge corpus pre-

processing tool, which was used to create the Japanese
part of v2 training corpus for the LLM-jp1）project. It
uses paragraph-centric text extraction and near-duplicate
detection approaches with sampling-based deduplication.
Running the detection and filtering pipeline on the ABCI
system takes approximately 10 hours for 1.4B Japanese
documents extracted from the Common Crawl dumps.

1 Introduction
We introduce Uzushio2）: an Apache Spark [1]-based

huge corpus preprocessing tool which was in development
from the summer of 2023. Large language and other foun-
dational models often require a multi-billion-token train-
ing corpus, and web data, e.g. Common Crawl [2], is often
used as a training corpus for these models. Because of the
large scale, processing such corpora requires significant
resources. Additionally, some required stages for process-
ing such corpora, e.g. near-duplicate detection, can be
non-trivial. In this paper, we give a brief introduction to
Uzushio and its processing steps.

The main processing pipeline of Uzushio consists of the
following stages.

• Document text extraction
• Near-duplicate detection
• Duplicate statistics merging
• Filtering

We separate duplicate detection and deduplication to en-
able better scalability and flexibility. Corpus deduplica-

1） https://llm-jp.nii.ac.jp/

2） https://github.com/WorksApplications/uzushio

tion is done during the filtering step, sampling from the
larger corpus using the statistics computed during the near-
duplicate detection step. Distributed task execution can
have spurious errors and problems, thus we design the most
computationally expensive part — near-duplicate detection
— to be executable for the parts of the whole corpus inde-
pendently of other parts, and merging the computed results
later. This additionally allows us to mix and match task
sizes based on the availability of computational resources,
making Uzushio very flexible to the system requirements.
All stages can be executed both in cloud (e.g. in AWS
EMR3）) and in HPC environments (we provide configura-
tion for the ABCI system).

2 Document Text Extraction
The objective of the first stage of Uzushio is to produce

paragraph-separated text documents from HTML docu-
ments. Our current implementation uses WARC [3] files
as input and outputs zstd [4]-compressed parquet files.

WARC Format Parsing Uzushio uses webarchive-
commons4）library to parse WARC files. We ignore all
non-response documents and filter the content of parsed
WARC messages to HTTP responses with text content.

Character Encoding Detection We use the follow-
ing algorithm to detect character encoding of the HTTP
body. We try encodings from different sources as specified
below. With each encoding, we try to decode 16k bytes
of the body and look for unmappable characters. If an un-
mappable character exists, we try the next encoding in the
list. If everything fails, we skip the current document.

1. Sniff the <meta http-equiv="content-type" ...>

tag from the body of the document. Use the encoding

3） https://aws.amazon.com/emr/

4） https://github.com/iipc/webarchive-commons
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specified in the content=... attribute.
2. Use the value of the Content-Type HTTP header.
3. Try the juniversalchardet5）library to guess the encod-

ing of the body.
4. Try UTF-8

Language Detection We use the language-
detector [5] library to detect languages. We use at most
20 kilobytes of document body to decode at most 4k
characters, while skipping all characters with the code
lower than 127. The exception to the rule is to keep
a single space in place of any sequence of whitespace
characters. The main idea here is to skip all markup while
forming the buffer for language detection.

HTML Parsing We parse the content of HTML docu-
ments using Apache Tika6）, which is widely used to extract
text content from various documents. The parsing step out-
puts a list of document paragraphs. We define paragraphs
based on the structure of the HTML document using tags
which are usually block-related, e.g. <p> or <div>. The
content of <br> tags is replaced with \n symbols. Af-
ter parsing we remove adjacent whitespace and delete all
empty or whitespace-only lines or paragraphs.

CSS selectors For each paragraph, we also record its
path in the HTML document as a CSS selector. For all
parent tags of the current paragraph-like tag, we record tag
name, id if it exists, and classes if they exist.

Links An HTML document contains a lot of links, and
pages which contain a lot of them are often not useful for
LLM training. Because of this, we mark text which is link
content. Namely, we surround the text content of <a> tags
with 0x02 and 0x03 characters in the extracted text.

3 Near-Duplicate Detection
We formulate the near-duplicate detection step as fol-

lows. For each paragraph, we compute its duplication
frequency: the number of times the paragraph or its near-
duplicates occur in the corpus.

For each paragraph, we track two hashes: the para-
graph’s own hash and near-duplicate group hash. During
the duplicate detection procedure, we update group hashes
to be the minimal hash for the whole group. Then the group
duplication frequency would be the sum of the duplication
frequency for all paragraphs.

5） https://github.com/albfernandez/juniversalchardet

6） https://tika.apache.org/

SimHash Algorithm The core part of our near-
duplicate detection implementation is the SimHash[6] al-
gorithm. It is a locality-sensitive hashing algorithm based
on Gaussian projections. By being locality-sensitive, sim-
ilar items will get similar hashes. We use these hashes as
signatures to find candidates for near-duplicate detection.

The core idea of SimHash is to multiply a feature vector
by a matrix of random numbers drawn from the Gaussian
distribution, basically utilizing a random Gaussian projec-
tion algorithm. The signs of the projected vector will be
bits of the hash value. In our application, we use character
n-gram hashes as the features.

Breaking Down Corpus into Paragraphs We com-
pute deduplication statistics paragraph-wise, so this step
breaks down documents into paragraphs. We addition-
ally strip all link and CSS path metadata from paragraphs,
resulting only in text content for near-duplicate detection.

Exact Duplication Frequencies Exact deduplica-
tion frequencies are the number of times each paragraph
occurs in the original corpus. We use the standard Spark
SQL aggregation functionality to compute this number.
Because of this step, we perform duplicate detection once
for each paragraph instance in the original corpus.

SimHash Signatures We use the SimHash algorithm
to compute signatures for each paragraph. Namely, for each
paragraph, we compute hashes of 2,3,4-grams and sample
from the Gaussian distribution using the hash values as
seeds. We use 128-bit signatures as the default size.

Sorting Corpus by SimHash Signatures Sorting
by signatures puts the paragraphs with similar signature
prefixes together in the sort order. In the case of distributed
sort, the paragraphs with similar signature prefixes are put
in the same partitions as well.

Duplicates in a Fixed Window The main duplicate
detection logic checks all pairs of paragraphs in a fixed-
sized window, reassigning group hashes if two paragraphs
were detected as near-duplicates. We detect if two para-
graphs are duplicates using the Levenstein distance for very
short paragraphs (if the average length is less than 30 char-
acters) or n-gram overlap for the longer ones.

We perform this operation independently for each par-
tition without taking into account partition boundaries, so
there could be false negatives on the partition boundaries.
Repeating the process several times with different sortings
mitigates this problem.
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Evaluating all pairs, even in a fixed window, is still com-
putationally expensive, so we use several tricks to reduce
computational costs. Instead of comparing n-grams di-
rectly, we compute bitsets based on hashes of character
n-grams and compute overlap using bitsets directly. This
implementation can undercount the number of matches in
the case of hash collisions but is much faster than compar-
ing n-grams directly.

Also, we treat paragraphs as non-similar if their length
differs by more than 30% or 50 characters, whichever of the
two numbers is smaller. We keep paragraphs in several lists
bucketed by different lengths. This allows us to completely
skip processing paragraph pairs which would be regarded
to be non-similar by their lengths alone.

Repeating Sorting and Checking Several Times
We repeat sorting paragraphs by SimHash signatures and
checking steps 5 times (by default). This helps us mitigate
problems with SimHash being a non-precise algorithm and
a lack of duplicate detection over the partition boundaries.
Each iteration of the algorithm propagates duplicate groups
by updating group hashes of the paragraphs to the mini-
mum paragraph hash in the group.

Compute Duplicate Statistics and Finalize Statis-
tics After the final duplicate groups are computed, we
aggregate per-paragraph full duplication frequencies into
per-group frequencies by summing per-group counts. This
produces duplicate statistics.

4 Merging Duplicate Statistics
Because the algorithm to compute duplicate statistic

data is deterministic, it is possible to merge the dupli-
cation statistics computed from two different datasets. The
merge procedure corrects group hashes and the related
near-duplicate frequencies.

5 Filtering
Uzushio filters form a filter chain. A filter can edit

contents of a document or delete it, or some of its para-
graphs. Documents that were deleted by a filter will not
have downstream filters in the filter chain applied to them.

Uzushio can output all documents, grouping them by the
filter which has deleted the document. For example, the
best data would be documents that pass all filters, and the
second best data would remain on the last filter, and so on.

Most of the filters are described in detail below. We also

provide filters which rewrite parts of the document like
headers or lists to Markdown syntax, which is often used
by LLMs.

Duplicate Documents Subsampling The main ob-
jective of this filter is to perform corpus deduplication. For
this, we estimate the duplication count of the document
from the paragraph near-duplicate frequency and then sam-
ple documents so the expected number of the documents
would be equal to the provided number.

Estimation is done by using percentiles, not means, be-
cause percentiles are more robust to outliers and most web
documents contain several extremely frequent paragraphs.

High-Frequency Subsequent Paragraph Trimming
We trim paragraphs if multiple successive ones have a
frequency higher than a specified threshold. The goal of
this filter is to remove text that is present on a large number
of pages, like navigation or advertisements, but leave in
place the main content, which should be less duplicated
over the corpus. As a safety mechanism to prevent over-
deletion of text, this filter supports removing paragraphs
only if a specified and subsequent number of them have
high near frequencies.

Document Compression Rate One good idea for
filtering is based on the observation that, especially in a
web corpus, texts with different characteristics have differ-
ent compression rates. Namely, we compute the ratio of
compressed text to uncompressed text and filter out doc-
uments that have lower or higher compression rates than
the provided thresholds. We use the LZ4 algorithm to
compress document text data.

Hiragana Ratio Another good heuristic to distinguish
low-quality Japanese documents from other ones is the ratio
of hiragana characters in text. While regular text contains
hiragana, lists, advertisements, and other low-quality text
contains a very low percentage of it. For this filter, we
measure the ratio of hiragana characters to the total number
of characters in a document.

Document Link Ratio The percentage of link text is
another useful criterion for distinguishing low-quality doc-
uments. The text extraction step of Uzushio records the
spans of text that were link bodies in original documents.
We use that information to compute the link ratio as the
number of characters that were in the links to the total
number of characters in the document.

Documents that contain many links are mostly low-
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Filter Size, TB Percentage

DuplicateDocs(5%, 5) 2.088 41.6%
Hiragana.Low 0.929 18.5%
Links.High 0.458 9.1%
DuplicatePars 0.380 7.6%

DupRatio(5%, 5) 0.151 3.0%
DupRatio(5%, 2.5) 0.151 3.0%
DupRatio(10%, 1.5) 0.463 9.2%

Total 5.015 100.0%

Table 1: Common Crawl filtering results

quality advertisement spaces or link farms and regular
pages do not contain that many links. This filter helps
us remove such pages.

Word List Filtering Documents can contain bad
words which are not suitable for training LLMs. For exam-
ple, the web contains a high number of adult-related sites.
Such documents are usually removed using word lists.

We provide two types of such filters: one counts all in-
stances of words, another counts only types of included
words. However, we do not do any other filtering on word
detection and any substring inclusion will be counted as a
word. For example, HojiChar [7] checks that there is a dif-
ferent character category on the detected word boundaries.
We adopt word lists developed by the HojiChar project,
removing words that caused a lot of false positives.

N-gram Based Language Model Filters One of the
strongest filters we implement is the n-gram language
model filter which allows users to evaluate per-document
or per-paragraph average perplexity and delete documents
or paragraphs for which the evaluated perplexity is larger
than the provided thresholds. The filter uses Sudachi for
tokenization and the KenLM [8, 9] library for the n-gram
language model implementation.

We provide two variations on the filter: per-document
and per-paragraph ones. In addition to that, we provide
an option to ignore outliers when evaluating perplexity:
a certain percentage of tokens with the highest tokenwise
perplexity are ignored.

6 Filtering and Extraction for LLM-jp
We extracted the text data from all Common Crawl

archives until the end of 2023. There were 5.7PB of
gzipped WARC archives, from which we got 5.95TB of

extracted text with paragraph CSS selectors and marked
link text, compressed with zstd. The extraction took about
two weeks on the AWS EMR Serverless platform in the
us-west-1 region, where the Common Crawl S3 bucket is
located, running two extraction tasks in parallel with 1,000
executors for each task, using ARM64 executors with Java
17 execution backend and 6 GB of RAM per 4 executors.
We were billed about $7,000 for the whole extraction pro-
cess, including temporary S3 storage and traffic egress.

Table 1 shows the results of filtering of the extracted
data. In total, there are 5.015 TB of gzipped json docu-
ments, without CSS selectors which were contained in the
extracted text. The process was done on the ABCI system,
using 10 rt F nodes in a distributed manner for each job
execution, submitting all jobs for the particular stage at
once. Near-duplicate detection and filtering were done per
segment for years after 2017 (inclusive) and per year for
years before 2016 (inclusive). It took around 6 hours for
near-duplicate detection, 1 hour for duplicate statistic data
merging and 3 hours for filtering, costing us approximately
300 ABCI points.

The top 4 filters were deduplication (using the 5th per-
centile as a marker, downsampled to 5 instances), low hira-
gana ratio (less than 15% of hiragana), high link ratio (more
than 40% of link text) and successive duplicate paragraphs
with a high duplication count.

We produce three sets of data for LLM training. The first
one contains downsampled documents with an expected
duplication count of 1.5, evaluated at the 10th percentile.
It contains almost no duplicate documents and is of the
best quality. The remaining two can contain duplicate doc-
uments, but should still contain mostly novel text. They are
downsampled to an expected count of 2.5 and 5, respec-
tively, both of which use the 5th percentile as a marker.

7 Conclusion
Uzushio is a distributed tool for processing very large

corpora built on the Apache Spark distributed computation
framework. It adopts a paragraph-centric approach: both
text extraction and deduplication treat paragraphs as the
main unit. This allows Uzushio to delete not only dupli-
cate documents but navigation-like content as well in an
unsupervised manner. Uzushio can be run on general HPC
systems like ABCI or in cloud environments.
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Figure 1: Number of extracted Japanese documents per Common Crawl segment
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KenLMPar(0.1,2,5000000.0)

DocLength.Low(50)

WordInstances(discrimination,9.0,uniq)

KenLMAvgDoc(0.1).Low(7.0)

KenLMAvgDoc(0.1).Low(5.0)

KenLMPar(0.1,3,1000000.0)

DocLength.Low(200)

KenLMAvgDoc(0.1).High(1000000.0)

KenLMAvgDoc(0.1).High(500000.0)

CompressionRate.Low(0.25)

CompressionRate.High(0.75)

CompressionRate.Low(0.4)

WordInstances(adult.txt,6.0,uniq)

LinkCharRatio.High(0.8)

WordInstances(adult.txt,9.0,uniq)

Nav

LargeFreqParagraphs(3,100)

CompressionRate.Low(0.5)

DedupDocsPercentile(0.05,2.5)

DedupDocsPercentile(0.1,1.5)

LargeFreqParagraphs(3,1000)

LinkCharRatio.High(0.4)

HiraganaRatio.Low(0.15)

Final Result

HiraganaRatio.Low(0.1)

DedupDocsPercentile(0.05,5.0)

Figure 2: Percentage of documents or document content that were removed by individual filters. Processing for 2013-2016
was done by the whole year, not by individual dumps. Filter names use internal definitions. Final Result is documents
which were not filtered out by any filter. Filter.{High, Low} means that the metric was higher or lower than the specified
threshold. DedupDocsPercentile filter was applied 3 times, first one (0.05, 5.0) at the beginning of the pipeline, where
it removed duplicate documents from further processing, and the remaining two times (0.05, 2.5), (0.1, 1.5) in the very
end of the pipeline to create sub-datasets of different quality, as described in Section 6.
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