
Find–the–Common: Benchmarking and Assessing Inductive
Reasoning Ability on Vision-Language Models

Shi Yuting1, Wei Houjing1, Jin Tao1, Zhao Yufeng1, and Naoya Inoue1,2

1JAIST 2RIKEN
{s2210096,houjing,morgan,yfzhao,naoya-i}@jaist.ac.jp

Abstract
Recent advances in Instruction-fine-tuned Vision and Lan-
guage Models (IVLMs) have revolutionized the landscape
of integrated vision and language understanding. How-
ever, Inductive Visual Reasoning—a vital skill for text-
image understanding—remains underexplored due to the
absence of benchmarks. So, in this paper, we introduce
Find–the–Common (FTC): a new vision and language task
for Inductive Visual Reasoning. In this task, models are
required to identify an answer that explains the common
attributes across visual scenes. We create a new dataset
for the FTC and assess the performance of several contem-
porary approaches including implicit reasoning, symbolic
reasoning, and implicit-symbolic reasoning with various
models. Extensive experiments show that even state-of-
the-art models like GPT-4V can only archive with 48%
accuracy on the FTC, for which, the FTC is a new chal-
lenge for the visual reasoning research community. Our
dataset is available online.

1 Introduction
Instruction-tuned Vision Language Models (IVLMs),

such as MiniGPT-4 (1), InstructBLIP (2), LLaVA (3), Vi-
sual ChatGPT (4), and GPT-4V (5) have been demon-
strated with excellent performance on Vision and Language
tasks (6; 7; 8) and also show the strong zero-shot gener-
alization ability to unseen tasks, such as writing HTMLs
based on a hand-drawing sketch and explaining the implicit
meaning of memes (1; 3).

Assessing VLMs involves various tasks testing percep-
tual skills like object recognition and complex analyses
including counting and reasoning. Notable benchmarks
like Compositional Visual Reasoning (9) evaluate compo-
sitional reasoning, Visual Spatial Reasoning (3) focuses on

Q: What is the common regularity between four 3D
scenes?

a. The yellow object on the far right among all yellow objects
is a cylinder.

b. The red sphere is in the forefront.
c. The cube on the far left among all cubes is green. ✓
d. The object farthest away is purple.

Figure 1: Example of the Find–the–Common task. Given
four 3D scenes and a 4-choices question, the task is to per-
form inductive reasoning to identify the correct statement
describing the common regularity between the 3D scenes.
The choices consist of one correct choice (c) two wrong
choices (a, d), and a decoy choice to fool models (b).

spatial understanding, and Visual Commonsense Reason-
ing (10) tests knowledge beyond visuals. Despite their
comprehensiveness, these benchmarks do not fully ad-
dress deductive reasoning, where models derive conclu-
sions from given premises, often employing commonsense
knowledge. Another important type of reasoning is in-
ductive reasoning, which aims to generalize a group of
finite observations to induce general rules in a bottom-up
fashion (11). In the context of vision processing, we can
define such competencies as Visual Inductive Reasoning,
which requires understanding multiple visual scenes and
then reasoning out common conclusions from those differ-
ent scenes. We argue that visual inductive reasoning has
been underexplored despite its importance, which raises
the following question: Given a set of visual scenes, can
VLMs identify a common rule describing these different
scenes?

To address this issue, we propose a novel benchmark,
termed Find–The–Common (FTC): a new task that re-
quired understanding and reasoning across 3D visual
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scenes and text reading comprehension. An example is
shown in Fig. 1. Given four 3D scenes and a multiple-
choice question, the task is to perform inductive reasoning
to identify the correct statement describing the common
regularity between the 3D scenes. Our contributions can
be summarized as follows:

• We introduce a novel benchmark Find–the–Common
for evaluating the inductive visual reasoning capabil-
ities of IVLMs (Sec. 2.1, Sec. 2.2). Our dataset con-
sists of 353 instances, each of which provides four 3D
scenes consisting of 2-6 objects and a four-choices
question, including a decoy choice that is partially
true in scenes. Our dataset is available online.

• We adapt three approaches for evaluation: (i) Im-
plicit Reasoning, (ii) Symbolic Reasoning , and (iii)
Implicit-Symbolic Reasoning with the current latest
state-of-the-art IVLMs. Our extensive experiments
show that InstructBLIP，LLAVA, and GPT-4V reveal
that even state-of-the-art IVLMs struggle to solve the
FTC task (Sec. 4). Our detailed analysis also finds that
GPT-4V exhibit tendencies to “hallucinate”, despite
their demonstrated proficiency in text-based inductive
reasoning.

2 Benchmark: Find–the–Common

2.1 Task Formulation

The benchmark focuses on the task of visual inductive rea-
soning, which involves extracting principles from specific
instances. Considering the challenges brought about by
the complexity and nuances in real photographs, we ini-
tiate our research from simplified 3D object scenes. This
approach allows us to construct inductive reasoning tasks
with clarity. By omitting extraneous details, we can con-
centrate more on evaluating the reasoning performance of
IVLMs. More specifically, we formulate the FTC task as
follows: Given an input instance 𝑍 = (𝐼, 𝑄, 𝐶) consisting
of an image 𝐼, a question 𝑄 with respect to a four-choice
answer 𝐶.

Image. Each image consists of four 3D scenes 𝐼 =

{𝑆1, 𝑆2, 𝑆3, 𝑆4}, each scene containing 2-6 objects. Each
object has four attributes including Color, Shape, Size
and Position, and each attribute corresponds with one
value. We defer to Tab. 1 for further details.

Table 1: Attributes of objects and their values.

Attributes Values

Color Red, Green, Blue, Yellow, Purple
Shape Cube, Sphere, Cylinder, Cone
Size Small, Medium, Large
Position (1,1), (1,2), ..., (7,7), (8,8)

Question and Answer. An answer is a set of choices
𝐶 = {𝑐, 𝑤1, 𝑤2, 𝑑} represents the regularities within
{𝑆1, 𝑆2, 𝑆3, 𝑆4}. Four choices {𝑐, 𝑤1, 𝑤2, 𝑑}, comprising
one correct choice 𝑐, two wrong choices 𝑤1, 𝑤2, and one
decoy choice 𝑑. The decoy choice is designed to be par-
tially true for given scenes, ensuring models examine all
scenes to determine the correct choice.

Given a question 𝑄, models aim to identify an an-
swer 𝑐 ∈ 𝐶 that holds true across all the provided scenes
𝑆1, 𝑆2, 𝑆3, 𝑆4. An example is given in Fig. 1.

2.2 Dataset Creation

To generate 3D scenes and multiple-choices answers, we
adopt a two-step approach: (1) Answer Generation: gen-
erate choices based on set pre-defined linguistic rule, and
(2) Scene Generation: generate scenes that satisfy the
correct choice and do not satisfy the wrong choices.

Answer Generation. We construct 13 linguistic tem-
plates with attribute placeholders at three levels:

• Four one-attribute template (e.g., “All objects are
[Shape].”).

• Six two-attributes template (e.g., “All objects are
[Color] [Shape].”).

• Three three-attributes template (e.g., “The [position]
[color] is [shape].”).

We then randomly select a template and fill in the place-
holders with different values. For [position], we use rela-
tive choices like “on the far left”, “on the far right”, “fore-
front”, and “farthest away” for diversity.

Scene Generation. We generate two types of 3D
scenes: (i) one scene satisfying 𝑐 but not 𝑑, 𝑤1, 𝑤2, and
(ii) three scenes satisfying 𝑐, 𝑑 but not 𝑤1, 𝑤2. We formu-
late this as a constraint satisfaction problem using Answer
Set Programming (ASP)(12), a logic-based framework for
such problems. We create an ASP program where each an-
swer set corresponds to one scene configuration. We define
predicates like shape(X, S) i.e., object X has shape S and
encodes rules as ASP rules. An example of ASP is shown
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in table4 in Appendix. To generate scenes that satisfy (or
do not satisfy) these rules, we use integrity constraints,
such as:

• To satisfy the rule “All objects must be red”:
:- not r all SH(red).

• To not satisfy the rule “All red objects must be cube”:
:- r all CL are SH(red, cube).

We then randomly sample one answer set using clingo1）

and convert it back to a scene configuration. Scenes are
rendered using pyrender2）. The final dataset comprises
353 instances.

2.3 Dataset Quality

To ensure that our visual inductive reasoning problems
are consistently solvable by humans, we conduct a hu-
man evaluation study. We randomly sample 100 instances
and ask two graduate school students to solve them. The
inter-annotator agreement between these evaluators indi-
cates Cohen’s Kappa (13) of 0.92, indicating almost agree-
ment. The accuracy scores of the two evaluators are 0.98
and 0.88, respectively. An evaluator with an accuracy of
0.88 is frequently fooled with decoy choices, which results
in lower accuracy.

3 Approach
We employ three approaches to assess the zero-shot gener-
alization capability of IVLMs on visual inductive reason-
ing:

Implicit Reasoning. Tests the models’ ability to iden-
tify common rules among scenes via utilizing visual per-
ception (Fig. 2(a)). The task involves selecting the correct
answer from the given four options by reasoning from the
distinct four 3D scenes.

Symbolic Reasoning. Evaluates the models’ capac-
ity to convert visual data into textual descriptions for logical
reasoning (Fig. 2(b)). Initially, four scenes are fed together
into IVLMs to generate their scene descriptions. Then
these descriptions, along with four options and a question,
are processed by a Large Language Model (LLM) to pro-
duce the correct choice.

Implicit-Symbolic Reasoning. Can be seen as a
combination pipeline of the above two approaches, where
the four 3D scenes are provided to models twice (Fig.

1） https://potassco.org/clingo/

2） https://github.com/mmatl/pyrender

2(c)). Specifically, in addition to generated scene descrip-
tions, 3D scenes are also provided to VLMs for predicting
the final answer. We showcase how it works on GPT-4V
in this work. The goal is to assess the models’ proficiency
in integrating visual and textual information to deduce the
correct option.

Figure 2: Baseline Reasoning

4 Experiment
In this section, we present our experimental setup and
results, focusing on evaluating three state-of-the-art In-
tegrated IVLMs using the baseline approaches outlined
in Sec. 3, comparison with human evaluation is also in-
cluded. Also, we build ground truth experiments to create
a controlled environment that isolates the models’ logical
reasoning faculties.

4.1 Setting

To evaluate models on our Find–the–Common benchmark,
we randomly sampled 50 instances and tested them by using
three baseline approaches discussed in Section 3, using one
or more of three types of Visual Language Models (VLMs):
(i) InstructBLIP (2), a smaller IVLM; (ii) LLAVA, which
combines a vision encoder with Large Language Models;
and (iii) GPT-4V(ision)3）, an extremely large VLM. We

3） https://openai.com/research/gpt-4v-system-card
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use Accuracy for evaluation. Further details of prompts
and model parameters, can be found in the Appendix. Ad-
ditionally, we use Chain-of-Thought (CoT) prompting (14)
without any few-shot demonstrations (henceforth, Zero-
shot CoT) in implicit reasoning.

4.2 Results and Analysis

Table 2: Accuracy of different models and approaches

Approach Model Accuracy
Symbolic GPT-4V 48.0%

InstructBLIP -
LLaVA 12.0%

Implicit GPT-4V 44.0%
GPT-4V (CoT) 42.0%
InstructBLIP 24.0%
InstructBLIP (CoT) -
LLaVA 30.0%
LLaVA (CoT) -
Human 91.5%

Implicit-Symbolic GPT-4V 46.0%

The performance of models for three baselines is shown in
Table 2. InstructBLIP and LLAVA, as smaller IVLMs, face
challenges, achieving only 21% and 30% accuracy respec-
tively in the Implicit baseline, indicating limited accuracy
compared to the human baseline. GPT-4V achieves 44%
accuracy, showing improvement but still lagging behind
human performance. These results suggest limited zero-
shot generalization capability in current visual instruction
fine-tuning methods for visual inductive reasoning.

Table 3: Ground Truth Approach

Model Accuracy

Implicit-Symbolic 46.0%
Symbolic-Ground truth 74.0%
Implicit-Symbolic-Ground Truth 92.5%

To analyze the reasoning capabilities of VLMs further,
we conducted two experiments, replacing VLM-generated
scene descriptions with ASP-generated scene parameters.
Using GPT-4V as the VLM and GPT-4 as the LLM, we
observed:

1) Including image information significantly enhances
model performance: In Table 4, the Implicit+Symbolic +
Ground Truth approach shows 92.5% accuracy, a 16.5%
increase over the 76% in the Symbolic baseline ground
truth, indicating images provide essential background in-
formation or visual cues.

2) A gap exists in reasoning accuracy using scene de-

scriptions: Automatically generated descriptions by VLMs
compared to actual scenes show a noticeable accuracy gap,
around 40% regardless of the method used. A manual re-
view of GPT-4V CoT-generated descriptions showed 82%
(41/50) cases of object hallucination, suggesting potential
misinterpretations in complex visual information process-
ing.

3) Language module ability in VLMs affects reason-
ing: InstructBLIP and LLAVA struggle with COT under-
standing, with LLAVA capable of generating, albeit in-
accurately, JSON scene descriptions. In contrast, GPT-
4V demonstrates stronger COT understanding and JSON
file generation. GPT-4’s 74% accuracy in the Symbolic-
Ground truth (Table 4) indicates its proficiency in pro-
cessing JSON-formatted textual information for linguistic
inductive reasoning tasks.

5 Conclusion
In our Find–the–Common benchmark test, the eval-

uation of IVLMs’ visual inductive reasoning capabilities
revealed key findings. Even advanced models like GPT-4V,
while making progress in visual tasks, still face significant
challenges compared to the human baseline, particularly in
object detection and scene interpretation. This highlights
the need for improvement in the field of visual inductive
reasoning.

Our study also underscores the importance of accurate
scene information in enhancing model performance and
the crucial role of effective interaction between images and
text prompts in increasing accuracy. Additionally, smaller
models like InstructBLIP and LLAVA show deficiencies
in handling complex reasoning tasks, indicating a need for
further optimization in model design.

All of these findings inspired the following for our fu-
ture work. First, given the challenges with multiple visual
scenes and hard-to-perceive objects, refining the dataset
with a well-designed hierarchy complexity will better eval-
uate VLMs’ adaptability and comprehension. Then, con-
sidering the object hallucination tendencies observed, a
potential direction for improvement in the future lies in
training regimes that emphasize precise visual reasoning
over textual inference.

― 837 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Acknowledgements
This work was supported by JSPS KAKENHI Grant

Number 19K20332. Additionally, we thank Surawat
Pothong and Tien Dang Huu, members of RebelsNLU lab
for their support.

References
[1]Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed El-

hoseiny. Minigpt-4: Enhancing vision-language understanding with
advanced large language models. arXiv preprint arXiv:2304.10592,
2023.

[2]Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven
Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning, 2023.

[3]Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual
instruction tuning, 2023.

[4]Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng
Tang, and Nan Duan. Visual chatgpt: Talking, drawing and editing
with visual foundation models. arXiv preprint arXiv:2303.04671,
2023.

[5]Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching
Lin, Zicheng Liu, and Lijuan Wang. The dawn of lmms: Preliminary
explorations with gpt-4v(ision), 2023.

[6]Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu,
and Enhong Chen. A survey on multimodal large language models.
arXiv preprint arXiv:2306.13549, 2023.

[7]Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng
Lei, Fanqing Meng, Siyuan Huang, Yu Qiao, and Ping Luo. Lvlm-
ehub: A comprehensive evaluation benchmark for large vision-
language models. arXiv preprint arXiv:2306.09265, 2023.

[8]Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan
Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng,
et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. arXiv preprint arXiv:2306.13394, 2023.

[9]Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-
Fei, C. Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic
dataset for compositional language and elementary visual reasoning,
2016.

[10]Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From
recognition to cognition: Visual commonsense reasoning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6720–6731, 2019.

[11]Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik
Cambria. Are large language models really good logical reasoners?
a comprehensive evaluation and beyond, 2023.

[12]Ilkka Niemelä. Answer set programming: A declarative approach to
solving challenging search problems. In 2011 41st IEEE Interna-
tional Symposium on Multiple-Valued Logic, pp. 139–141, 2011.

[13]M.L. McHugh. Interrater reliability: the kappa statistic. Biochem
Med (Zagreb), Vol. 22, No. 3, pp. 276–282, 2012.

[14]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei
Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances
in Neural Information Processing Systems, Vol. 35, pp. 24824–
24837, 2022.

― 838 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Table 4: ASP program example

Template: All objects are [shape]:
Rule: r all SH(S) :- shape(X, S) : obj(X)

Template: A [color] object exists, and all [color] objects are [shape]:
Rule: r all CL are SH(C, S) :- r CL exists(C), shape(X, S) : color(X, C).

Table 5: Prompt examples for various baseline approaches

Implicit Baseline Approach
What is the common regularity between four 3D scenes? Choose one correct answer from the following choices:
(a) The green cube is on the far left.
(b) A blue object exists.
(c) The purple cylinder is farthest away.
(d) The object in the forefront is cone.

Implicit Baseline Approach (COT)
What is the common regularity between four 3D scenes? Choose one correct answer from the following choices:
(a) The green cube is on the far left.
(b) A blue object exists.
(c) The purple cylinder is farthest away.
(d) The object in the forefront is cone.
Let’s think step by step.

Symbolic Baseline Approach
Step 1:
Please analyze the provided image with 4 scenes of objects on a flat surface...

Table 6: Hyperparameter Settings for Various Models

Model Hyperparameters

InstructBLIP num beams = 5 max new tokens = 500, min length = 10, top p = 0.9, repetition penalty
= 1.5, length penalty = 1.0, temperature = 1

GPT-4V temperature = 0.7, max tokens = 100, top p = 1.0, frequency penalty = 0.0, pres-
ence penalty = 0.0

LLAVA do sample = True, temperature = 0.2, max new tokens = 1024, use cache = True, stop-
ping criteria = [stopping criteria]

GPT-4 temperature = 0.7, max tokens = 1000, top p = 1.0, frequency penalty = 0.0, pres-
ence penalty = 0.0
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