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Abstract

Neural machine translation (NMT) systems are vulner-
able when trained on limited data. This is a common sce-
nario in low-resource tasks in the real world. To increase
robustness, researchers intently added realistic noise in the
training phase. Noise simulation using text perturbation
has been proven to be efficient in writing systems that use
Latin letters. In this study, we further explore perturbation
techniques on more complex abugida writing systems, for
which the visual similarity of complex glyphs is considered
to capture the essential nature of these writing systems. Be-
sides the generated noise, we investigated three training ap-
proaches such as subword regularization, adversarial train-
ing, and consistency training. Finally, we propose to com-
bine them to maximize the translation performance. We
conducted experiments on six languages: Bengali, Hindi,
Myanmar, Khmer, Lao, and Thai. Our training approach

obtained the best performance for five languages.

1 Introduction

Neural machine translation (NMT) systems have been
shown to be vulnerable in noisy settings, where slightly
modified inputs cause serious translation failures [1, 4].
Boucher et al. [2] showed that techniques using pre-trained
This drawback

is more disastrous in low-resource scenarios, where the

language models cannot prevent this.

model’s robustness becomes a crucial issue.

Several text perturbation techniques have been devel-
oped to improve robustness by introducing synthesized tex-
tual noise [12, 6]. Most techniques mostly focus on lan-
guages that use alphabetic systems, such as Latin letters.
As a more complex writing system, Chinese characters

were investigated by Zhang et al. [20]. In the present study,
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Original: AFBCC1 213C47 053D32
Perturbed: AFBEC1C1® 213C47471®053D32320
Perturbed: AFC1BC® 21473C47® 05391D32®
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Figure 1 Homoglyph perturbation examples for various
abugida systems. The Unicode of each character is listed below
the glyph. Perturbed characters are emphasized in bold font. Var-
ious patterns cause homoglyphs: 1) repetition, 2) permutation,
and 3) decomposition (e.g., BE — C1 B8 in Khmer).

we further fill the gap in text perturbation techniques for
understudied abugida writing systems, which vary and are
used widely in South-East Asia.

A reasonable perturbation technique should produce
meaningful and readable text that is indistinguishable for
humans, but disastrous for a system’s prediction [11]. Vi-
sually similar glyphs or homoglyphsl) were investigated
in Eger et al. [6], Boucher et al. [2], and Le et al. [11] ob-
tained realistic samples from large corpora. As a primary
contribution, we further develop these previous studies for
abugida writing systems. Some exemplary homoglyphs in
various abugida systems are illustrated in Figure 1.

To address noise, we propose a training strategy that
leverages adversarial training, subword regularization, and
consistency training. We selected six languages that use
abugida systems, Bengali, Hindi, Myanmar, Khmer, Lao,
and Thai, and experimented on them for low-resource
tasks. Overcoming noisy perturbations improved the ro-

bustness, with non-degenerate performance.

1) Le., glyphs with identical visuals, but different encodings.
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2 Background: Abugidas

An abugida is a writing system that combines features
of both syllabic and segmental systems. Text is written
as a sequence of syllables, which resemble Japanese hira-
gana, but can be broken down into separate consonants and
vowels, as in a segmental system. A typical abugida sylla-
ble consists of a base consonant accompanied by a default
vowel or additional vowels represented by diacritics. In
computer systems, these syllables are rendered into glyphs,
which are visual symbols in the rendering process. A glyph
represents a letter or a composition of multiple letters. For
example, in Latin, the letter a is a glyph, and combined
with a grave accent (diacritic), it becomes another glyph d;
similarly, in abugidas, as shown in Figure 2, a consonant is
represented by a glyph, as in (a), and combined with mul-
tiple diacritics to become another glyph, as in (b). As in
Figure 1, similar glyphs or homoglyphs commonly occur
in the composition of complex diacritics, which have nu-
merous patterns and are difficult to engineer. We explore
such diacritic composition from human-generated corpora.
Hereafter, we use the term glyph to refer to a visual symbol
and glyph token to refer to its Unicode characters.
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Figure 2 Examples of Khmer glyphs. (a) is a glyph without
diacritics and (b) with diacritics.

3 Proposed Method

3.1 Perturbation for Abugidas

3.1.1 Overall Processing

Given a sentence X = (x,...,Xy), each token x; has a
chance of being replaced with an adversarial candidate x” €
V chosen based on its similarity score w.r.t x; [6], where V
is vocabulary that contains all possible tokens, including
clean and noisy tokens? . The perturbation probability for
each targeted token x; is formulated as
_ score(x’,xi,,B)’ i %

Z(x;) (1)

otherwise

g(x'|x;) =
1-a,

2) As V is fixed in practice, we skip the process if x; ¢ V.
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Z(x;) = Z score(x”, x;, B) 2)

x"eV\{x;}

score(a,b,B) =1(s(a,b) > B) - s(a, b), 3)

where I(+) is an indicator function; @ and 8 control the
chance of x; being perturbed and the similarity threshold,
respectively; and s(a, b) is a similarity function between
the continuous vectors of two tokens a and b, for exam-
ple, the cosine similarity s(a, b) = cos(v(a),v(b)), and
where v(-) is a vector. The overall perturbation process is
illustrated in Figure 3. Next, we present the process for
obtaining V from corpora that contain diverse adversarial
candidates in Section 3.1.2, and describe how vector v(-) is
represented by an image in Section 3.1.3 and by counting
diacritics in Section 3.1.4.
o weights

01105 ...+~ g(x'|x;)

Jev

Figure 3 Overall perturbation processing.

X1 | %

3.1.2 Vocabulary Construction

This step is similar to a typical vocabulary preparation
process that consists of tokenization and unique token ex-
traction to obtain V. Specifically, we categorize each char-
acter as a consonant or diacritic based on Unicode Standard
data. After that, we base tokenization on the consonant po-
sition such that each token starts with a consonant followed
by many or zero diacritics, and then obtain a list of unique
tokens as V. Additionally, because the similarity is mostly
around the diacritics, we want to perturb only the diacritic
parts of each targeted token. To achieve this, our trick is to
replace the consonant counterpart of each token in V with
that of the targeted token x;, which varies every time step i.
This trick is based on the assumption that the visual form
of the consonant never changes when it is combined with
diacritics. However, we discovered one case in Bengali and
Hindi in which the base consonant changed its visual form.

Hence, we simply skipped the perturbation for such case.

3.1.3 Image-based Glyph Embeddings (IGE)

We convert each glyph image” into a linear vector of

m - n dimensions by arranging rows in the m X n matrix,

3)  We used Pillow9.4.0 and Google Noto Serif fonts with 100px for
all languages.
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where each entry corresponds to a pixel in the grayscale im-
age. The pixel values range from O (representing the empty
area) to 255 (representing the visible part of a glyph). Be-
cause the image size varies greatly across glyphs, we pre-
determine the maximum size m X n based on all glyphs and
then render them into the m X n size. They must align to the
left on the horizontal axis and to the middle on the verti-
cal axis. Additionally, we empty the pixels that correspond
to the consonant to ensure that the similarity value is not
affected by the common pixels of the base consonant. Fi-
nally, we use the cosine similarity function for IGE, which
is defined as s(a, b) = cos(v(a), v(b)).

3.1.4 Diacritic-Count Embeddings (DGE)

A simpler approach involves counting the diacritics that
exist in a glyph token and how many times they occur.
Specifically, a glyph token is represented by a frequency
vector, where each entry corresponds to a diacritic in the
language and the value of each entry is the count of the
corresponding diacritic in the glyph token. Additionally,
we smooth each frequency value using an exponent y. For
instance, if a language / has a set of diacritics {a, b, ¢}
and a glyph token consists of diacritics acc, DGE repre-
sents it using a frequency vector [1,0,2]” because a oc-
curs once and ¢ occurs twice. Using DGE, we can iden-
tify two glyphs that have similar sets of diacritics, re-
gardless of the order of the diacritics. We set y = 0.3
in all experiments and use the inverse Euclidean distance
as the similarity function, which is defined as s(a,b) =
(Euclidean(v(a),v(b)) +1)~L.

3.2 Robust NMT Training

To generalize a model in the presence of noisy inputs, we
explore variable noises and train the model on them. Pre-
viously, Eger et al. [6] proposed adversarial training (AT)
that perturbs the training data in the same manner as the
test data, while Kudo [10] introduced subword regulariza-
tion (SR), which samples variable subwords for training.
Both techniques have been proven effective against noisy
inputs. In this work, we combine both techniques by first
perturbing each training sample and then sampling vari-
able subwords for each perturbed sample. For generaliza-
tion, we extract V to perturb the test data from external cor-
pora, whereas we extract V to perturb the training data only
from the training data itself. We hypothesize that visually
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similar text exists in the training data and can be used in
our robust training. In this study, we use unigram subword
tokenizer [10], and sample subwords with the n-best size
[ = oo and distribution smoothness u = 0.2.

We further adopt consistency training [17] to enforce the
model’s prediction being invariant between noisy and clean
inputs. Let x is an input sequence and X’ is its noisy variant.
Therefore, given a training set {(x;,y;)}_,, the objective

function can be expressed as

1 1
L(0) = 3 1= log pa(yIxi) — 5 log po(yilx))
+AD(po(y;x0)llpo(yilx))]. 4)

where 6 is a set of model parameters and D(-||-) is a non-
negative distance metric between two distributions that are
controlled by the hyperparameter 4. Following Wang et al.
[17], we use Kullback-Leibler divergence for D(:||-) and
set 1 =0.2.

4 Experiments

4.1 Settings

We experimented on six abugida languages: Bengali
(bg), Hindi (hi), Myanmar (my), Khmer (km), Lao (lo),
and Thai (th). We constructed V from the cleaned Com-
monCrawls [18, 3] and evaluated translation performance
on the Asian Language Treebank dataset [16] from abugida
languages to English. We tokenized the training/valida-
tion/test sets using SentencePiece, with a joint vocabulary
of 4k. We perturbed the test data using IGE and the training
data using either IGE or DGE.

We used the transformer architecture for all the models
and implemented them using Fairseq [13] in our experi-
ments. We trained all the models on the eight GPUs (Tesla
V100 SXM2 with 32 GB memory) and the number of pa-
rameters was approximately 54 million. We mostly based
the configuration on Guzman et al. [7], which was specif-
ically designed for the Indic low-resource NMT setting.
However, we further fine-tuned the number of epochs and
found that increasing the number of epochs to 1k achieved

improvements across all models.
4.2 Results and Discussions

We evaluated the performance of the vanilla model
(Base) with respect to our perturbation technique using

B =1

The results are presented in Figure 4. We ob-
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Figure 4 BLEU scores of NMT with @ from 0.0 to 1.0, with a
step of 0.2 on the x-axis, and 3 set to 1.0.

served performance degradation across all languages, with
a more significant influence observed for Hindi, Myanmar,
and Khmer. This could be attributed to the higher num-
ber of perturbed glyphs in these languages compared with
Bengali, Lao, and Thai. The details regarding the number
of perturbed glyphs per line are presented in Figure 5.

Table 1 demonstrates the effectiveness of the robust ap-
proaches against perturbation, even with SR, and show the
improved performance of SR with consistency training,
SR¢;. Our robust training using IGE and DGE further im-
proved robustness performance, in most cases, while main-
taining comparable performance on clean input, as dis-
cussed in the Appendix A. It is noteworthy that our ap-
proach only exploited the visual similarity within the train-
ing set and the results supported our hypothesis.

In this study, we only examined the impact of perturba-
tion using homoglyphs with 8 = 1. Reducing S, for exam-
ple, to 0.95, would be likely to result in a decrease in NMT
performance. However, this may not be a realistic scenario
because it would also reduce the readability of the text for
humans. We provide examples of perturbed samples with
smaller 8 in Table 3 in the Appendix. Interestingly, a native
Khmer speaker was able to read samples with a 8 value of
0.9, which indicates that the perturbed text was still read-
able at lower g values. However, more extensive assess-
ments with native speakers are required in our future study

to better understand the impact of S5 on text readability.

5 Related Work

5.1 Text Perturbation

Text perturbation has been extensively studied in the lit-
erature, with two scenarios: white-box and black-box. In

the white-box scenario, the model’s gradients are leveraged
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Table 1 BLEU results on perturbed inputs. SR, denotes SR
with consistency training. * and T indicate the significance values
p < 0.01 and p < 0.05 compared with SR, respectively.

bg hi my km lo th
Base 13.8 82 68 12.0 147 195
SR 166 11.0 153 179 16.8 20.6
SR., 188 14.0 172 195 18.7 225
IGE 18.1 14.8* 18.3* 21.1* 19.1T 22.5
DGE 19.0° 14.4" 18.3* 21.2* 18.7 225

[12, 5], whereas in the black-box scenario, only the model’s
input and output are known [12, 5]. Various perturbation
operations have been proposed, such as randomly insert-
ing/deleting/replacing/swapping characters [9], character
shuffling, perturbation based on the keyboard layout and
natural typos [1], extraction of visually similar glyphs of
characters [6], and similar embedding subwords [14]. Our
study is similar to that of Eger et al. [6], where visually

similar glyphs were explored.
5.2 Consistency Training

In various studies, researchers have used consistency
training in various ways to enhance the performance of
natural language processing (NLP) models. Previously,
Wang et al. [17] used consistency training to improve sub-
word tokenization in multilingual models. Xie et al. [19]
and Kambhatla et al. [8] improved data augmentation tech-
niques for NMT using consistency training. Furthermore,
Park et al. [15] used consistency training on virtual noise
to improve the performance of text classification and nat-
ural language inference tasks. In this study, we adopted
consistency training to regularize our training on the joint
sampling of adversarial text and subwords to enhance the

robustness of the NMT model against perturbations.

6 Conclusion

In this study, we presented a perturbation approach
that leverages visual similarity and introduced a training
strategy to maintain the performance of the NMT model.
We exposed the vulnerability of the vanilla NMT model
through experiments that perturbed test data using mono-
glyphs, and demonstrated the importance of robust training
against text perturbation. The findings of this study can
aid future research effort in evaluating the generalization
capabilities of NMT models, particularly for low-resource

settings and understudied languages.
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A Additional Results and Analysis

The impact of our perturbation technique with § =
on the dataset is measured by the amount of noise intro-
duced, as shown in Figure 5. The graph indicates that
Hindi, Myanmar, and Khmer had a relatively high amount
of noise per sentence compared with Bengali, Lao, and
Thai. As aresult, the performance of the NMT models on
Hindi, Myanmar, and Khmer was significantly impacted
compared with Bengali, Lao, and Thai. The amount of
noise could be increased using highly similar glyphs with
B < 1, as demonstrated in Table 3. However, it is impor-
tant to ensure that these perturbations are still readable by

humans so that robustness studies are realistic.

Bengali Hindi Myanmar
20 - . .
%]
@
5 10 A k k
c
H*
0 ip-e—e—e— . .
Khmer Lao Thai
20 A 1 1
%)
@
5 10 . .
c
#
0 A o009
0.0 1.0 0.0 1.0 0.0 1.0

Figure 5 Average amount of noise per sentence on the test set
with various a.

Table 2 BLEU results on clean inputs.

bg hi my km lo th
Base 169 255 19.8 21.8 157 203
SR 17.1 267 199 223 169 208
SR 195 289 22.0 242 18.8 22.6
IGE 18.7 28.2 21.5 240 19.1 225
DGE 19.0 28.0 214 244 187 224

Table 2 summarizes the performance of all NMT models
on a clean test set. Our results show that SR outperformed
the baseline for all languages and consistency training fur-
ther boosted performance. Our training strategy with both
IGE and DGE was comparable with SR.;.
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Table 3 Perturbed samples. The first one is clean and the fol-
lowers are perturbed with 8 of 1, 0.95 and 0.90 in top-down order.

Bengali:

a2 g5 432 e e afb TrEe oz zete A Al

42 6 Y32 @S o5 afb W ez weIrs SiE A |
ai‘gﬁ?‘%ﬁ?ﬂ‘{mﬁﬁ &%ﬁw (MR Q8IS Aol el |
a2 b 493 R g «fb NoRTa ooz geolts A el |

Hindi:

TR 946G HoRT § Wik 39 FS | 6l 6l Hehdl 8l
] e HehTeeh § Wifch 38wyl 7 e & W B
W] Sea S § @ifeh 38 Tgsat & 81 6 Il ol
W] Sea Herres § @ifeh 38 mgsat § 81 8 Tt ol

Myanmar:

O?OSGOOJS QJé 33('\0)% 38C\°')QSODUR ORSSOS GQ}SNéS CRQDS({PS Qca, GQEUSNS%CO 1
O?OgGOgS mé @Cg% SBCgOSmOR ORSBOS eaﬁmés C\ngﬂﬁbg O% @qm%g%co 1]
c}cgecgs wé :-racg§ sacxgu‘:‘»c:a“ﬁ cﬁ;ecﬁ eaﬁc\:és CRaeaps a% ac§o§cxg§$85] [

cgogeczg mé 39%‘3%: 39:3::303:{? cﬁgecg ea:gmé’s cﬁa’méﬂ:s Q% e%cgc\gg%gé] i

Khmer:

IUINRIS N WFHTHESHRRNBS A G

iinRISNwEhinSeguE iy A s
o)

SEINHIS M UEH

e

ghi

g8 afig]
iGihniSsn winiRSsgus

§
§
e
BeghnnsuRaggiw

i
i
i
in

Lao:

Bwdntoduly wzmnﬁné’lezﬁmnaﬂ wovgaanBodnaduld.
Bodntoduly wsmnﬁm"’laxmmgg wolgauInBnhnaTuls.
BnSatnguiu mxé‘mﬁnﬁaéuﬂm@g uhEAlanGoBhasuts.

Buanlnduly wedanfnndzmfng) wouaidInfnatmauts.

Thai:

aunnudiusuaingnilauazaiainazdenslaogsoUnf 2 Hou

awnudesusudingnilauazaiainazdinslaagse [WEnfa 2 1Hou
s PR s em o 3 T

ahuudeiiiusudingnilauazAlafisedsasilaagaaludng 2 Hou

autuudeiusudingnilawazaiadidedsnsiinogso UBnfe 2 Hou
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