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Abstract
We introduce BERT-NAR-BERT (BnB) – a pre-trained

non-autoregressive sequence-to-sequence model, which
employs BERT as the backbone for the encoder and de-
coder for natural language generation tasks in general and
biomedical domains. We adopt length classification and
connectionist temporal classification models to control the
output length of BnB. Evaluation results on language un-
derstanding, abstractive summarization, question genera-
tion, machine translation and biomedical text summariza-
tion show substantial improvements in inference speed
(∼10x) with a slight deficiency in output quality com-
pared to our autoregressive baseline. Code is released
on GitHub1）under the Apache 2.0 License.

1 Introduction
Sequence-to-sequence (S2S) models have recently been

widely used for natural language processing problems. The
S2S architecture is first introduced in the field of machine
translation (MT) [1] and later used for pre-trained genera-
tive language models (LM), such as BART [2], Optimus [3]
and BERT2BERT [4]. These models usually adopt an au-
toregressive (AR) decoding strategy to generate texts from
left to right, token by token. AR decoding can perform
high-quality inference, but it has the limitation that it can-
not decode tokens in parallel and requires more time and
computational cost for inference.

In this paper, we propose a novel S2S non-autoregressive
(NAR) model based on existing Transformer [5] archi-
tectures to allow parameter initialization from publicly
available PLM checkpoints. Specifically, we extend the
BERT2BERT (B2B) [4] model to build a NAR S2S model

1） https://github.com/aistairc/BERT-NAR-BERT

Figure 1 The S2S BERT-NAR-BERT (BnB) architecture.

using BERT as the backbone for both encoder and de-
coder models. The NAR modeling allows fast decoding
and generation of longer texts. Using BERT as the back-
bone, we can start training with reliable parameters by
loading the pre-trained BERT checkpoints. In addition,
unlike the B2B model, we perform one epoch of additional
pre-training starting at the BERT checkpoints and investi-
gate the effectiveness of the additional pre-training2）. We
adopt the Length Classification (LC) [6] or Connectionist
Temporal Classification (CTC) [7] models to control the
output length of BnB.

We fine-tune and evaluate the BnB model on the gen-
eral language understanding evaluation (GLUE), abstrac-
tive summarization, question generation, MT, and biomed-
ical text summarization. We compare its performance with
several AR and NAR models.

2 BERT-NAR-BERT Framework
Our model extends the B2B model into a NAR decoder

with additional pre-training and modeling output length. It
is our direct AR baseline. The overview of BnB is shown
in Figure 1.

2） We use the term additional pre-training for pre-training our BnB
model. We load the pre-trained checkpoints and do not pre-train
from scratch.
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2.1 Model Architecture

The BnB model comprises a multi-layer Transformer-
based encoder and decoder, in which the embedding layer
and the stack of transformer layers are initialized with
BERT [8]. To leverage the expressiveness power of ex-
isting pre-trained BERT models, we initialize our encoder
and decoder parts with the pre-trained BERT parameters.
We denote the number of layers (i.e., Transformer blocks)
as 𝐿, the hidden size as 𝐻, and the number of self-attention
heads as 𝐴.

BnB Encoder The encoder part of BnB is the same
architecture as the BERT model. The BnB model first
feeds the source input sequence 𝑿 = 𝒙1, . . . , 𝒙𝑛 to the BnB
encoder layer. In the BnB embedding layers, the input rep-
resentation is constructed by summing the corresponding
token (X), position (P), and type (T) embeddings.

The embeddings are fed into the BERT self-attention
and feed-forward layers. The hidden representation of the
final layer, 𝒉, is passed to the subsequent layer for obtaining
latent representations.

Latent Representations We construct the latent rep-
resentation 𝒛 = 𝑾𝐸𝒉 + 𝒃 based on token-level represen-
tation from the encoder hidden state 𝒉 where 𝒛 ∈ ℝ𝑃 is
a 𝑃-dimensional vector and 𝑾𝐸 ∈ ℝ𝑃×𝐻 is the weight
matrix. A visualization of BnB encoder and the latent
representations can be seen in the left part of Figure 1.

BnB Decoder The decoder part is also based on the
BERT architecture, and we can directly initialize the de-
coder with the pre-trained BERT model. The cross-
attention mechanism is adopted from BERT2BERT and the
encoder hidden representation of the final layer 𝒉 is used
for cross-attention. Our model differs from BERT2BERT
in input representation and attention masks to enable NAR
decoding. In our BnB decoder, input representation is
constructed without providing any target tokens. The input
representation is constructed by summing the correspond-
ing P and T embeddings and the latent embedding z from
the encoder. The attention masks are the normal masks
that give access to all future tokens. The resulting de-
coder output representations of the final layer are fed to the
subsequent generation layer.

Masked Language Modeling We employ the self-
supervised learning strategy adopted in BERT. We ran-
domly mask the tokens in each sequence, and all masked

tokens are predicted in a non-autoregressive manner.
Permutation Language Modeling We randomly

permute tokens in a sequence and predict the original order
of the tokens, which is inspired by the idea in XLNet [9].

2.2 Modeling Output Length

To control the generation output length of BnB, we im-
plement two length prediction (LP) models, namely: 1)
Length Classification [6], and 2) CTC [7] that implicitly
determines the target length from the token alignment.

Length Classification The length classification for-
mulates the LP as a classification task and utilizes the latent
representations to predict the target length:

𝑝𝜃 (𝒚 |𝒛 )=
∑

𝑙 𝑝𝜃 (𝒚,𝑙 |𝒛 )=𝑝𝜃 (𝒚,𝑙𝑦 |𝒛)=𝑝𝜃 (𝒚 |𝒛,𝑙𝑦) 𝑝𝜃 (𝑙𝑦 |𝒛) , (1)

where 𝑙𝑦 denotes the length of 𝒚 that is the gold length
in training and 𝑝𝜃

(
𝑙𝑦 |𝒛

)
= L𝐿 is the length predictor that

predicts the length of target sentence 𝒚. Once the sentence
length is predicted, the model predicts each output token
with a token-level categorical cross-entropy loss.

Connectionist Temporal Classification In contrast
to LC, we also adopt the CTC [7] considering its supe-
rior performance and flexibility for latent alignment. The
CTC loss is independently computed after the decoder by
replacing the length classification and CE loss.

3 Experiments
In this section, we evaluate the BERT-NAR-BERT both

in the general and biomedical domains over the differ-
ent downstream tasks including GLUE, abstractive sum-
marization, question generation, MT, and biomedical text
summarization. (details in Appendix A).

3.1 GLUE

In Table 1, we compare our fully non-autoregressive
BnB approach with the OpenAI GPT 3） [10], encoder-
based BERT, and variational auto encoder-based Optimus
models. In this table, we compare the BnB based on the
permutation LM objectives. Our best BnB model with per-
mutation LM objective function outperforms the OpenAI
GPT [10], and BERT models on averaged scores, but shows
comparable results with of Optimus. The Optimus model
follows the sentence-level pre-training procedure which al-
lows training the model longer than document-level.

3） The first version since the model parameters are comparable with
the proposed BnB model.
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Model
MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

Avg.392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k
ACC F1/ACC ACC ACC MCC P.C. F1 ACC

OpenAI GPT [10] 82.1 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERT [8] 84.6 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
Optimus [3] 83.4 90.9 90.8 92.4 57.3 88.8 87.3 69.7 82.5
BnB Encoder + additional pre-training 82.2 90.3 89.8 90.7 54.3 87.9 88.0 66.8 81.3

Table 1 Comparison of OpenAI GPT, BERT, Optimus, and BnB on the validation set of GLUE. ACC and P.C stand for accuracy and
Pearson correlation coefficient, respectively. The OpenAI GPT scores are reported by Devlin et al. [8]. Bold and underlined scores
denote the best and second-best results.

Type Model XSum SQuAD v1.1
R-1 R-2 R-L Latency (↓) R-L B-4 Latency (↓)

AR
Transformer [5] 30.7 10.8 24.5 18.33x 29.4 4.6 11.17x
BART [2] 38.8 16.2 30.6 12.92x 42.6 17.1 8.00x
BERT2BERT [4] 37.5 15.2 30.1 10.67x 39.3 13.5 10.67x

Semi-AR iNAT [11] 27.0 6.9 22.4 2.17x 32.3 3.2 2.25x
CMLM [12] 29.1 7.7 23.0 7.92x 29.6 3.9 7.50x

NAR

NAT [13] 24.0 3.9 20.3 1.25x 31.5 2.5 1.17x
CMLM [12] 23.8 3.6 20.2 1.17x 31.6 2.5 1.17x
ELMER-Hard [14] 34.5 9.8 26.1 0.83x 37.9 11.8 0.83x
ELMER-Soft [14] 38.3 14.2 29.9 0.83x 40.2 13.5 0.83x
BnB 32.7 11.6 27.8 1.0x 36.8 9.1 1.0x
BnB + additional pre-training 36.1 13.4 30.0 1.0x 41.7 13.8 1.0x

Table 2 Performance comparison on XSum and SQuAD v1.1. R-1/2/L and B-4 stand for ROUGE-1/2/L and BLEU-4, respectively.
Bold and underlined scores denote the best and second-best results within NAR models. We include existing method latency values
reported by Li et al. [14].

3.2 Summarization and Question Generation

Table 2 shows the performance comparison of BnB
over the XSum and SQuAD v1.1 datasets for summariza-
tion and question generation tasks, respectively. Our best
model outperforms all the semi-autoregressive (semi-AR)
and most of the NAR approaches but closely competes
with the AR approaches. Under the NAR setting, we
achieve second-best results over the XSum and SQuAD
v1.1 datasets. Our model outperforms the ELMER-Hard
on the XSum and SQuAD v1.1 datasets, while ELMER-
Soft remains the definitive state-of-the-art. ELMER-Hard
and ELMER-soft denote fine-tuning ELMER with hard
and soft early exit strategies, respectively. Unlike BnB that
needs to determine length by integrating an extra LP model,
ELMER dynamically adjusts the output length by emitting
an end token at any position with early exit strategies.

3.3 Machine Translation

For MT, we compare the scores with autoregressive base-
lines - Transformer MT models and BERT2BERT, initial-
ized with random parameters or pre-trained multilingual
BERT. We compare random initialization of parameters

EN - DE EN - RO
Model → ← → ←
Transformer 27.30 25.36 21.53 27.81
B2B mBERT 25.80 23.40 23.24 30.67
BnB random 7.15 8.02 4.12 7.11
BnB mBERT 6.81 11.07 5.92 9.36
BnB mBERT dist. 27.49 27.06 18.94 30.42

Table 3 MT experiment results in BLEU scores of training
Transformer, B2B, and BnB initialized with multilingual BERT
(mBERT); trained on original and distilled (dist.) data from
WMT 2014 (German) and WMT 2016 (Romanian). Bold and
underlined scores denote the best and second-best results.

with initialization from mBERT, as well as knowledge dis-
tillation [15], which has previously proven to be highly
beneficial for NAR MT models [16]. Results of MT exper-
iments are summarized in Table 3. The results show that
our model can compete with the baseline Transformer and
B2B models after knowledge distillation. It is expected as
the BnBs are compared with the autoregressive baseline
translation models.

3.4 Biomedical Text Summarization

Table 4 shows the performance comparison between AR
methods and our BnB. First, our model is about 18 times
faster than AR models in inference. Regarding genera-
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Model
iCliniq

R-1 R-2 R-L Latency
BART base [2] 61.43 48.68 59.71 18.5x
BioBART base [17] 61.07 48.47 59.42 18.7x
BnB 57.43 43.99 55.24 1.0x

HealthCareMagic
R-1 R-2 R-L Latency

BART base [2] 46.81 26.19 44.34 18.1x
BioBART base [17] 46.67 26.03 44.11 18.9x
BnB 40.05 19.38 38.27 1.0x

Table 4 The main results on the summarization tasks in the
biomedical domain. R-1/2/L stand for ROUGE-1/2/L.

tive performance, biomedical BnB showed the ROUGE-
1 scores of about 94% and 85% of the performance by
BioBART on the iCliniq and HealthCareMagic datasets,
respectively.

3.5 Inference Speedup

We also compare the differences in inference speed be-
tween the models. While training speed is mostly similar
for all, BnB can generate output 17x faster on average due
to its non-autoregressive nature (tested on NVIDIA V100
and A100 GPUs) as shown in the Latency column of Ta-
ble 2. For MT, translating 2,000 sentences in the WMT16
test data set with BnB takes 87 seconds on a GPU and 587
seconds on a CPU. The same took 234 seconds on a GPU
and 1,234 seconds on a CPU for an equivalent with the
direct B2B baseline model. BERT-NAR-BERT consists of
110M parameters for the encoder and decoder, including
12 layers, 768 hidden sizes, and 12 self-attention heads.
Our direct baseline BERT2BERT model follows the same
parameters, 220M totals for both the encoder and decoder
models.

4 Related Work
Pre-trained Language Models such as GPT-2 [18], XL-

Net [9], and XLM [19] are neural networks trained on large-
scale datasets that can be fine-tuned on problem-specific
data. They became widely adopted after BERT [8], which
reported state of the art (SOTA) results for 11 NLP tasks.
Our PLM BnB is also trained on a large-scale dataset and
further fine-tuned on 12 specific NLP tasks, 10 of which
overlap with BERT.

Li et al. [3] proposed the first large-scale variational auto

encoder (VAE) language model, Optimus. They connect
a BERT encoder and a GPT-2 decoder using a universal
latent embedding space. The model is first pre-trained on a
large text corpus and then fine-tuned for various language
generation and understanding tasks. It achieves SOTA on
VAE language modeling benchmarks. While the general
idea of our work is similar, there are several core differences
from this paper. Our model does not have a VAE and
instead of the GPT-2 decoder we use the same BERT as in
the encoder.

Rothe et al. [4] developed Transformer-based S2S mod-
els by describing several combinations of model initial-
ization that include BERT2BERT, a BERT-initialized en-
coder paired with a BERT-initialized AR decoder. Our
implementation of BnB is similar, except for the main
differences of having a length prediction model, a latent
representation from the encoder output layer, and a NAR
decoder. The NAR decoder can decode tokens in parallel
which drastically reduce the inference computational cost.

Sohrab et al. [20] describe BERT-NAR-BERT (BnB)
– a pre-trained non-autoregressive sequence-to-sequence
model, which employs BERT as the backbone for the en-
coder and decoder for natural language understanding and
generation tasks. BnB shows substantial improvements in
inference speed over the downstream tasks. This work is
a paper summarizing on the basis of the original research
methods and findings of BERT-NAR-BERT [20].

5 Conclusion
This paper introduces an efficient non-autoregressive

S2S model BERT-NAR-BERT that outperforms baselines
in most of the language understanding, summarization and
question generation tasks. Still, it remains competitive in
the quality of outputs when evaluated on MT tasks. How-
ever, our model with distilled data shows improvement
over the baseline approaches. We find that using pre-
trained BERT models as the encoder and decoder, along
with CTC for LP and knowledge distillation for MT, helps
improve the performance of language generation tasks.

In future work, we plan to experiment with replacing
the BERT models with other pre-trained language models
which can be used as encoders/decoders, as well as running
broader evaluations on other S2S NLP tasks. We will also
address large language models and decoder only models in
our future direction.
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A Experimental Settings

A.1 Pre-training: Data and Task Settings

We pre-train our BERT-NAR-BERT (additional pre-
training) by loading the PLM checkpoints as S2S task.
The additional pre-training procedure follows existing lit-
erature on PLM pre-training. The entire Wikipedia data
dump with the version of ‌20220301.en‌ from Huggingface
datasets4）is used by only considering the ‌text ‌ field for
pre-training without any data filtering scheme. As a re-
sult, 6,458,670 input texts that include multiple sequences
are truncated to a maximum sequence length of 512, and
3.2B tokens are used for our additional pre-training. We
initialize BnB with ‌bert-base-cased‌ and update all the
parameters of BnB’s encoder and decoder, while the check-
points are saved from both encoder and decoder outputs.
We set the 15% probability of masking for masked LM and
50% probability of permuting for permutation LM.

Biomedical Pre-training As a parameter initializa-
tion, we loaded BioBERT [21] v1.1 base-cased checkpoints
for the initial values of the encoder and decoder parts of
BnB. We then performed the additional pre-training on the
PubMed/MEDLINE abstract corpus5）. This corpus con-
tains 5.4B tokens of research article abstracts from the 2021
version of PubMed/MEDLINE. We used the same vocab-
ulary as BioBERT [21] to tokenize the texts. We truncated
all the input texts to 512 maximum sequence lengths fol-
lowing BioBART [17], which is an autoregressive biomedi-
cal pre-trained model. CTC loss and permutation language
modeling are adopted for additional pre-training.

A.2 Fine-tuning: Data and Task Settings

For fine-tuning, we describe the data and task settings
of the benchmark downstream tasks. We initialize all the
downstream tasks with additional pre-training checkpoints
generated from BnB.

GLUE We consider the General Language Under-
standing Evaluation (GLUE) benchmark [22], where we
employ the Optimus evaluation script6） to evaluate the
scores and select the best performances among different
runs to report all the scores following Optimus.

4） https://huggingface.co/datasets/wikipedia

5） https://huggingface.co/datasets/pubmed

6） https://github.com/ChunyuanLI/Optimus

Abstractive Summarization Abstractive text sum-
marization aims to produce a short version of a document
while preserving its salient information content. We eval-
uate the models based on the BBC extreme [23] (XSum)
dataset. This is a news summarization dataset containing
227K news articles and single-sentence summary pairs.
We set the number of training epochs to 100 and adopt early
stopping. The evaluation metric is ROUGE [24], including
ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L).
For latency comparison, we evaluate the time required to
generate all the samples in the validation set with the same
machine settings for our BnB and ELMER [14] and calcu-
late the ratios of latency. We include the reported latency
values of other existing models from ELMER.

Question Generation SQuAD v1.1 [25] is a dataset
created for machine reading comprehension. The dataset
contains 98K triples of {passage, question, answer} where
the input is formatted as answer [SEP] passage. We use
this data as a question generation dataset, in which a model
receives an answer and a passage and generates the corre-
sponding question. We follow the same train, validation,
and test data split setting as Du et al. [26]. The evalua-
tion metrics are ROUGE-L and BLEU-4 (B-4). We follow
the same settings as the abstractive summarization task for
latency comparison.

Machine Translation We evaluate our models using
data sets from the WMT shared tasks on news translation
- English (EN)↔German (DE) data from WMT 2014 and
English↔Romanian (RO) data from WMT 2016. We also
experiment with distilled versions of these data sets gen-
erated by vanilla transformer models [5] trained on the
normal data. We load the WMT datasets from Hugging-
face datasets7）,8）and use them directly to train the models
without filtering, back-translation, or any other kinds of
synthetic data generation. We evaluate the performance by
computing BLEU [27] scores using sacreBLEU [28].

Biomedical Text Summarization For fine-tuning
the model on downstream tasks, we follow the same set-
tings as BioBART [17]. We fine-tuned our model on two
biomedical text summarization tasks in English: iCliniq
and HealthCareMagic [29] datasets.

7） https://huggingface.co/datasets/wmt14

8） https://huggingface.co/datasets/wmt16
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