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Abstract
視覚と言語を組み合わせた事前学習（Vision-

Language Pre-training; VLP）は、多くのタスクに対し
て Fine-Tuning なしでも一定の性能を発揮する。特
に、VLPモデルの一つである CLIPは、ゼロショッ
トで教師あり ResNet-50と同等の画像分類性能を持
つとされるが、その多くは英語向けであり、日本
語特化 CLIPでの性能は 10–25%劣る。我々は、画像
エンコーダと訓練データを 7–10倍大にし、さらに
言語エンコーダの拡大を行うことで、日本語特化
CLIPの画像検索性能 R@5を 14%改善させた。これ
は、OpenAIが公開する英語版 CLIPの精度を 2%上
回るものである。追加実験でハイパーパラメータの
影響を調査し、大きなバッチサイズが性能向上に重
要であることを明らかにした。

1 Introduction
Task-agnostic foundation models [1], owing to their

adaptability across a diverse spectrum of downstream
tasks without compromising quality, have attracted sig-
nificant public attention subsequent to the unveiling of
ChatGPT empowered by the underlying Generative Pre-
trained Transformer (GPT) model [2], concurrently pre-
senting numerous opportunities and challenges. The pre-
training methodology adopted by the foundation models
has expanded into the domain of multimodal learning, cat-
alyzed by the release of the Contrastive Language-Image
Pre-training (CLIP) model [3] developed by OpenAI.

The CLIP model integrates an image encoder and a text
encoder to align multimodal inputs within a shared em-
bedding space. The image encoder and text encoder un-
dergo joint training to maximize the cosine similarities
between the image and text embeddings of matching pairs

within the batch, while simultaneously minimizing those
for mismatching pairs. The paper [3] demonstrates CLIP
model’s noteworthy zero-shot classification capability on
ImageNet-1k [4] comparable to that of the original ResNet-
50 [5], suggesting its potential generalizability to down-
stream tasks such as image captioning, image retrieval, and
visual question answering (VQA). Nevertheless, the afore-
mentioned CLIP model is devoid of multilingual support,
rendering it unsuitable for non-English environments.

Several endeavors have been undertaken to address this
challenge. Chinese CLIP [6], for instance, adopted a two-
stage training strategy. Italian CLIP [7] was developed
contemporaneously with the original CLIP release. The
“sonoisa” model [8] implemented transfer learning to align
the embeddings of Japanese text with their English coun-
terparts. The company rinna has introduced a series of
Japanese models [9]. The recent release of Japanese Stable
CLIP [10] has attained an unprecedented top-1 accuracy
of 62.06% on Japanese ImageNet-1k [9, 11].

Notwithstanding these efforts, the accuracy remains
more than 10 points lower than that of the English CLIP
model of a comparable size [12] (75.3%). It remains un-
explored whether this performance gap is intrinsic to lan-
guage differences or is a consequence of inferior training
methods and/or a smaller dataset.

Compounding the issue is that the evaluation metric for
Japanese CLIP is presently limited to ImageNet-1k clas-
sification accuracy. As articulated in the OpenAI CLIP
paper [3], validating CLIP’s transferability on image and
text retrieval—the tasks for which it is pre-trained—is nec-
essary. It is noteworthy that the CLIP models demonstrate
weaker performance on these tasks [3, 13], particularly on
the MS-COCO dataset [14]. We opt to address the more
challenging task to genuinely test the model’s versatility.
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Therefore, we define our evaluation metric as zero-shot im-
age recall and text recall on MS-COCO, while reassessing
the baseline CLIP models using the same metric.

For the broad community of Japanese AI developers and
users with an interest in multimodal representation, we
strive to enhance Japanese CLIP to the level of English
models.

2 Accuracy gap
To clarify the underlying reason for the accuracy gap

between English models and Japanese models, we began by
evaluating the text-to-image recall and image-to-text recall
on the 5K validation set of MS-COCO [14] for English
models and STAIR Captions [15] (Japanese MS-COCO)1）

for Japanese models.
The obtained results are summarized in Table 1. No-

tably, the accuracy gap ranges between 10 to 25 points,
which can be decomposed into the following:

• The gap of ∼10 percentage points between English
and Japanese, as indicated by the comparison between
JA ViT-B/16 and EN ViT-B/16, potentially due to dif-
ferences intrinsic to the language and/or inconsistent
size of the dataset (12M for JA vs 400M for EN).

• ∼3 percentage points attributable to model size,
demonstrated by comparison between EN ViT-B/16
and EN ViT-L/14.

• 1 to 2 percentage points associated with prompt en-
gineering, inferred from differences between our re-
sults without prompt engineering and the previously
reported ones [3] for the same model, which is con-
sistent with the discussion in the paper [3].

In contrast to prompt engineering boosting the perfor-
mance of English CLIP models, Japanese CLIP models
suffer from such a technique, as evidenced by our results
of 1 to 4 points weaker R@1 performance after prepend-
ing and/or appending prompts to the original text. As
the Japanese captions consist of a mix of nominals and
complete sentences, no single prompt might consistently
function well in terms of grammatical structure. This could
be the source of the aforementioned detrimental effect of
prompt engineering. See details in Appendix A.

1） While MS-COCO [14] and STAIR Captions [15] share a com-
mon set of images, the captions in the latter dataset were manually
labeled, irrespective of the English text, leading to a lack of 1-to-1
correspondence. However, we use the term “Japanese MS-COCO”
throughout the paper to underscore the correspondence on images.

3 Larger image encoder and dataset

3.1 Training strategy

The rinna CLIP model [9] was chosen as the starting
point and the baseline since it was the one with the highest
zero-shot top-𝑘 (𝑘 = 1, 5) accuracy on the ImageNet val-
idation set amongst Japanese CLIP models accessible to
the public at the time of our study.

Note that the model was trained on Conceptual 12M
(CC12M) [16] with captions translated into Japanese, the
size of which, ∼12 million, is merely 3% of the dataset
size employed in the development of the OpenAI CLIP
models [3]. In light of the preference for a larger albeit
noisy dataset over a smaller one in VLP [3, 17], CC12M is
deemed unfavorable compared with the Japanese subset of
LAION-5B [18], consisting of approximately 120 million
Japanese captions paired with corresponding images. For
this reason, the latter dataset was employed in this work.

It is additionally observed that, in terms of the number
of parameters, the image encoder, ViT-B/16, of the rinna
baseline model [9] (86M) is less than a 50th of that in the
currently best-performing publicly available CLIP model,
EVA-02-CLIP-E/14+ [13] (4.4B). However, the size of the
image encoder is shown to be positively correlated with
the model’s zero-shot performance on image classifica-
tion, video classification, and retrieval [3, 12, 13]. Bal-
ancing between training/inference time and the resulting
performance, we selected the “Huge” variant of Vision
Transformer with 14×14 input patch size (ViT-H/14) [19],
with 632M parameters, as the architecture for the image
encoder. This size is approximately the geometric mean of
the base size and the size of the best-performing one.

Considering training efficiency, we initialized our model
by combining the well-performing ViT-H/14 image en-
coder pre-trained for vision-language tasks by Open-
CLIP [12] and the text encoder from the rinna Japanese
CLIP model [9]. The rationale is that images should be
perceived similarly regardless of the native language of the
viewer, whereas text is intrinsically language-dependent.

For enhanced data- and compute-efficiency, we applied
“Locked-image Tuning” (LiT) [20], the strategy of opti-
mizing the model with a frozen pre-trained image encoder,
since it has yielded superior models compared with from-
scratch CLIP [3] or A Large-scale ImaGe and Noisy-text
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Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

EN ViT-B/16 51.7 76.8 84.3 32.7 57.7 68.2
EN ViT-L/14 57.5 80.3 87.6 36.1 60.8 70.8
EN ViT-L/14∗ 58.4 81.5 88.1 37.8 62.4 72.2
JA ViT-B/16 36.9 64.3 74.3 24.8 48.8 60.0
JA Base (ours) 39.2 66.3 76.6 28.9 53.3 63.9
JA Deeper (ours) 48.7 74.0 82.4 36.5 61.5 71.8
JA Wider (ours) 47.9 74.2 83.2 37.3 62.8 72.7

Table 1: Zero-shot retrieval on MS-COCO [14, 15].
The Japanese (JA) ViT-B/16 CLIP model is developed by
rinna [9], while the English (EN) models are OpenAI CLIP
models [3], in which the ViT-L/14 model is the best Ope-
nAI model pre-trained at a 336-pixel resolution. All exter-
nal models are re-evaluated without prompt engineering,
using an internal script employed consistently throughout
the study, with the exception that the row labeled aster-
isk corresponds to previously published data [3]. Unless
stated otherwise, all model comparisons in this study are
conducted without prompt engineering to ensure equal con-
ditions. Bold indicates best in category performance for
each metric. R@𝑘 (𝑘 = 1, 5, 10) is short for recall@𝑘 (%).

embedding (ALIGN) [17] models and has proven its capa-
bility to train a non-English CLIP model [6].

3.2 Results and discussion

Combining the ideas of replacing the dataset with a 10-
times larger one [18], employing a 7.3-times larger image
encoder [19], combining pre-trained encoders from vari-
ous sources [9, 12], and the efficient “LiT” training strat-
egy [20], we trained our CLIP model for Japanese, named
“Base”, with details delineated in the Appendix B.1. As
indicated in Table 1, our Base model beats the baseline
rinna model [9] by 2 to 5 points in zero-shot retrieval on
Japanese MS-COCO [15].

For ablation study on hyperparameters, multiple models
were trained in parallel, with various settings. We summa-
rize our discoveries as follows.

Batch size. We have conducted two sets, A and B, of
experiments, with the batch size in set B being 8 times that
in set A. Image retrieval R@5 on Japanese MS-COCO [15]
was evaluated for each saved checkpoint, and the last values
of R@5 for each experiment were extracted for the follow-
ing analyses. Since the sample standard deviations are
consistently less than 0.2 point, the experiments should be
considered converged. For comparison, the expected R@5

ID 1 2 3 4 5 6 7 8
Set A A A B B B B B
LR (10−4) 2.5 5 10 4 10 20 40 80
R@5 52.2 52.3 52.1 53.0 52.9 52.9 52.9 52.8

Table 2: Estimated image retrieval R@5 on Japanese
MS-COCO [15] for each setting. The BS for set B
(131072) is 8 times that for set A (16384). The width
of 95% confidence intervals is consistently 0.5 point.

are listed in Table 2, with details described in Appendix
C. Notably, two sets of confidence intervals are disjoint,
manifesting a significant improvement from A to B.

Careful scrutiny of Table 2 signifies that such improve-
ment is not influenced by the learning rate (LR) and, there-
fore, should be attributable to the increased the batch size.
Upon comparing the 3rd and 5th settings, we discern a
0.8-point increase despite the fixed LR. In reference to the
linear scaling rule for LR [21], one might argue that LR
should scale proportionally with the batch size (BS). Com-
paring 1st vs 6th, 2nd vs 7th, and 3rd vs 8th experiments,
we recognize consistent enhancements under a controlled
LR-to-BS ratio.

Having seen such results, we hypothesize that the sig-
nificance of BS may arise from the construction of the
loss function calculated from the cosine similarity matrix,
containing 𝑂 (𝑁2) mismatching pairs, i.e., off-diagonal el-
ements, with 𝑁 representing the batch size. Given that
the information encoded into the loss function grows faster
than the BS, a larger BS is expected to be beneficial.

Learning rate. The overlapping confidence intervals
within each set suggest that the LR is not a determinant.
However, as revealed in the set B, an increase in LR tends to
reduce R@5, albeit insignificantly, implying that an over-
large LR could potentially lead to accuracy degradation.
Conversely, an excessively small LR might adversely im-
pact training efficiency, as demonstrated in another exper-
iment with an LR of 10−6 where the R@5 shows a slow
increase across 3 epochs without any sign of convergence.

4 Larger text encoder
Despite its improvement over the Japanese baseline

model [9], our Base model still lags behind ViT-L/14, the
best OpenAI model trained for English [3], by 7.5 points
of text-to-image recall@5 (see Table 1).

As both the image encoder and dataset are enlarged, the
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text encoder (111M parameters) may become a bottleneck,
limiting the full potential of the model. Building on previ-
ous studies of CLIP that involved scaling the text encoder
along with the image encoder [3, 12, 13], we explored
the possibility of increasing the size of the text encoder to
enhance our Japanese CLIP model, Base.

4.1 Model initialization

Considering the risks associated with training the text
encoder from scratch, such as the possibility of falling
into local minima or even divergence and low training effi-
ciency, we proposed two potential solutions, both of which
involve initializing the larger text encoder using our origi-
nal model, Base.

Modified ZerO. ZerO [22], a fully deterministic ini-
tialization technique using only zeros and ones, is reported
to maintain the expressivity of the model architecture while
ensuring training reproducibility. Noticing its effectiveness
in handling ultra-deep networks due to dynamical isome-
try [23, 24], we employed it with minor modifications to
initialize a doubly deeper text encoder (Appendix D).

Model Fusion. As an alternative to expanding the
Transformer-based text encoder [25] along the layer di-
mension, we constructed a wider text encoder by doubling
the number of attention heads, followed by initialization
that we refer to as “Model Fusion” of two Base models,
which involves concatenating all vectors and stacking all
weight matrices into block diagonal matrices, with the ex-
ceptions explained in Appendix E.

4.2 Results and discussion

We have trained the Deeper model with modified ZerO
and the Wider model with Model Fusion. Details are de-
lineated in the Appendix B.2. As shown in Table 1, our
models with larger text encoder greatly improve from the
rinna baseline [9] as well as the previous model, Base, and
attain best performances in Japanese models. Notably, the
Wider model outperforms the best OpenAI CLIP model [3]
by a margin of 2.0 point of text-to-image recall@5.

Initially, there was apprehension that the Wider model
might suffer from the degeneracy issue, i.e., not exhibit-
ing expressivity surpassing that of Base, given that it was
initialized with identical copies of two Base models. How-
ever, as the model evolved over iterations, the two identical
components appeared to diverge, potentially influenced by

accumulated errors (such as floating-point errors and nu-
merical errors due to parallelization [26]) and/or random-
ness introduced by Dropout layers [27]. As a result, the
Wider model turned out to outperform the Deeper model
across all metrics but text retrieval R@1 (Table 1).2）

5 Conclusion and future work
In summary, our contributions comprise:

• The development of a high-quality Japanese CLIP
model, Wider, outperforming the best OpenAI CLIP
model [3] in image retrieval R@5 by 2.0 points.

• The ZerO initialization adapted for the Transformer
architecture, and the Model Fusion technique aiming
at the inheritance of previously achieved accuracy by
initializing a larger model with two smaller ones.

• Investigation into hyperparameters for training CLIP,
highlighting the significance of a large batch size and
the learning rate within an appropriate range.

• Insights into the accuracy gap observed between En-
glish CLIP models and Japanese CLIP models, pri-
marily attributed to different languages and slightly
influenced by model size and prompt engineering.

• Additional evaluation on MS-COCO [15] for existing
Japanese CLIP models.

• Applicability of the scaling laws (image encoder, text
encoder, dataset) for Japanese CLIP.

Our future work on this project entails a comparison of
our models with Japanese Stable CLIP [10], a release that
was not available at the time of our study.3）

Another avenue for future work involves the applica-
tion of our models in downstream tasks beyond retrieval,
concurrently with a comparative examination against other
available Japanese CLIP models [8, 9, 10].

A third idea would be proportional scaling of all dimen-
sions for either/both encoder(s), as is recommended for
Vision Transformer [19].

Lastly, alternative initialization techniques, for example,
Linear Growth Operator (LiGO) [28], could be investigated
and compared with our approaches.

2） However, this does not necessarily indicate that expanding width
is superior to increasing depth or that Model Fusion is better than
modified ZerO, given the inconsistent parameter counts, with 196M
for the Deeper text encoder and 278M for the Wider text encoder.

3） It is noteworthy that the latter model was partially trained on
Japanese MS-COCO [15], impeding the assessment of its zero-shot
performance on the dataset. Consequently, the evaluation metric
must be carefully designed.
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[22] Jiawei Zhao, Florian Schäfer, and Anima Anandkumar. ZerO initializa-
tion: Initializing neural networks with only zeros and ones. arXiv preprint
arXiv:2110.12661, 2022.

[23] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120, 2014.

[24] Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isom-
etry and a mean field theory of RNNs: Gating enables signal propagation in
recurrent neural networks. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning,
Vol. 80 of Proceedings of Machine Learning Research, pp. 873–882.
PMLR, 10–15 Jul 2018.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2019.
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A Prompt engineering
Prepending “a photo of” boosted OpenAI CLIP’s R@1 by

1–2 points [3]. However, we tested multiple prompts on rinna
CLIP [9] where braces were replaced with captions, resulting
in the following sequence with increasing retrieval performance:
「{}」の画像 < 「{}」の写真 < {} の写真 < {} の画像 <
画像の中で {} <写真の中で {} ≤ {}. Note that the captions
in Japanese MS-COCO [15] are a blend of full sentences such
as “テーブルの上に花瓶に入った花が置いてある”, and
nominals such as “草むらに座る亜麻色のクマの近影”.

B Details of training
B.1 Base model

Due to the discrepancy in embedding dimensions (i.e., the out-
put dimensions of the final image/text projection layer) between
the rinna Japanese CLIP model [9] (512) and the OpenCLIP
ViT-H/14 model [12] (1024), the final text projection layer was
reshaped to match the final image projection layer and randomized
with a Kaiming uniform initializer [38].

Given the re-initialization of the text projection layer from
scratch, the training commenced with a BS of 8192 and a linearly
increasing LR from 0 to 10−6 for 2000 iterations, subsequently
transitioning to constant-LR training, amounting to 3 epochs.
The BS was subsequently elevated to 131072, accompanied by a
linearly increasing LR reaching its maximum value of 4 × 10−4

within 500 iterations. Such training persisted for 1 epoch, suc-
ceeded by an additional training of ∼2 epochs, equipped with a
cosine annealing LR scheduler [39] decaying to 1% of its max
value. Other configurations remained consistent with the proce-
dures previously published [3, 9].

B.2 Deeper and Wider model
Deeper. The LR decayed from 10−4 to 10−6 using a cosine

annealing LR scheduler [39] for 1 epoch, with frozen pre-trained
component (i.e., the shallow half of the text encoder), followed by
repetitive warm restarts, spanning ∼8 epochs, with the relaxation
of all constraints on the text encoder.

Wider. The initialized text encoder was freely trained for
∼7 epochs, through a sequence of 3 warm restarts of LR, cosine-
annealed [39] from 10−4 to 10−6.

C Confidence interval
Consider retrievals using the 𝑖-th checkpoint within an ex-

periment as 𝑛𝑖 ∈ ℤ+ independent and identically distributed
(i.i.d.) Bernoulli trials, out of which 𝑠𝑖 ∈ {0, . . . , 𝑛𝑖} are suc-
cessful, in which case the likelihood of 𝑠𝑖 has a binomial dis-
tribution Bin (𝑛𝑖 , 𝑝) given the recall 𝑝 as a parameter assumed
to follow the conjugate prior, i.e., beta distribution Beta (𝑎, 𝑏),
with hyperparameters 𝛼, 𝛽 > 0 and support 𝑝 ∈ [0, 1]. With the
assumption that all observations of 𝑠𝑖 are independent, of which
the set 𝑆 consists, it can be derived that the posterior probabil-
ity ℙ(𝑝 | 𝑆; 𝑎, 𝑏) is Beta (𝑎 +∑

𝑖 𝑠𝑖 , 𝑏 +∑
𝑖 (𝑛𝑖 − 𝑠𝑖)). We can

calculate the confidence interval (CI) with a significance level of
𝛼 ∈ (0, 1) as (𝑝min (𝑎, 𝑏;𝛼), 𝑝max (𝑎, 𝑏;𝛼)) such that

ℙ[𝑝 ≤ 𝑝min (𝑎, 𝑏;𝛼) | 𝑆; 𝑎, 𝑏] = 𝛼

2
,

ℙ[𝑝 ≥ 𝑝max (𝑎, 𝑏;𝛼) | 𝑆; 𝑎, 𝑏] = 𝛼

2
.

Note that
∑
𝑖 𝑠𝑖 ≫ 1,

∑
𝑖 (𝑛𝑖 − 𝑠𝑖) ≫ 1. When 𝑎 and 𝑏 are small,

CI can be estimated as (𝑝min (1, 1;𝛼), 𝑝max (1, 1;𝛼)), the latter

of which is equivalently the case of uniform prior.
Alternatively, it can be assumed that R@5 values for

an experiment are i.i.d. samples from beta distribution
Beta (𝜙𝜇, 𝜙(1 − 𝜇)), with 𝜇 ∈ (0, 1) being the mean and pre-
cision denoted as 𝜙 ∈ (0, +∞). Since each R@5 is calculated
from 𝑛𝑖 = 25000 samples, with 5 captions corresponding each of
the 5000 images, the posterior probability derived above implies
that the precision parameter 𝜙 should be no less than 𝑛𝑖 . There-
fore, 𝜙 is fixed to the value for the most conservative estimation of
CI. Thanks to the asymptotic normality of maximum likelihood
estimators (MLE) [40], we can calculate the CI from Fisher infor-
mation matrix [41] following established procedures [42]. Note
that the MLE for the mean 𝜇 coincides with the average R@5,
(∑𝑖 𝑠𝑖) /(

∑
𝑖 𝑛𝑖), and that two approaches of CI calculation yield

identical results—the mean 𝜇, summarized in Table 2, is the
midpoint of the 95% CI whose width is 5 points, consistently.

D Modified ZerO initialization
All layers of the Base text encoder are inherited by the larger

text model, and the newly added deeper Transformer layers [43]
are initialized with zeros, with exceptions listed as follows.

• ZerO is applied to both the query weight matrix and the
dimension-increasing weight matrix of the feed-forward
network for each added layer.

• The weights of newly added LayerNorm [44] are set to 1.
• The output weight matrices of multi-head attention in deeper

layers are either randomized with a Kaiming uniform ini-
tializer [38] or initialized with ZerO. Both yield models
with similar performance, and therefore, we report results
generated from the former initialization.

E Model Fusion
Denote two text models with a shared tokenizer as 𝐴 and 𝐵. Let

the common dimensionality of the inner-layer of the feed-forward
networks within the layers be 𝑑 𝑓 𝑓 , and the Transforer hidden size
be 𝑑model,𝐴 and 𝑑model,𝐵, respectively. Model Fusion generates
a combined model by concatenating all vectors and stacking all
weight matrices into block diagonal matrices, with the exceptions
listed as follows.

• The feed-forward networks expressed by

z𝑖 ∈ ℝ𝑑model,𝑖 ↦→ 𝑎
(
z𝑖WT

1,𝑖 + b1,𝑖
)

WT
2,𝑖 + b2,𝑖 ,

where 𝑖 is either 𝐴 or 𝐵, 𝑎 denotes activation function,
z is the input row vector, W1,𝑖 ∈ ℝ𝑑 𝑓 𝑓 ×𝑑model,𝑖 ,W2,𝑖 ∈
ℝ𝑑model,𝑖×𝑑 𝑓 𝑓 are weight matrices, and b1,𝑖 ∈ ℝ𝑑 𝑓 𝑓 , b2,𝑖 ∈
ℝ𝑑model,𝑖 are row vectors for the bias term, are combined
into

z ∈ ℝ
∑

𝑖 𝑑model,𝑖 ↦→ 𝑎
(
zWT

1 + b1
)

WT
2 + b2,

where

W1 =
[ 1

2 W1,𝐴
1
2 W1,𝐵

]
,

b1 =
1
2
(
b1,𝐴 + b1,𝐵

)
,

W2 =
[
WT

2,𝐴 WT
2,𝐵

]T
,

and z and b2 are obtained from concatenation.
• The final projection matrix of the text encoder is treated

similar to W1 to generate averaged outputs from both mod-
els.
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