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Abstract 

Code-switching (CS) is the switching between 

multiple languages in speech. Current literature on 

code-switching transcription technology has been 

successful in translating the CS transcripts into one 

language but there yet to exist satisfactory technology to 

accurately transcribe one single speaker’s CS audio into 

CS transcripts. Current speech-to-text (STT) technology, 

although produces accurate transcriptions, is limited to 

monolingual sentences. In this paper, the focus is on an 

unexplored area: expanding STT to English and Japanese 

CS language transcription without utilizing translation 

software.  

1 Introduction   

Bilingualism, the ability to speak two languages, is 

prevalent—more than half of the world is bilingual. [1] 

This leads many to code-switch, a phenomenon where 

one speaks multiple languages interchangeably in spoken 

sentences.  

Accurately transcribing code-switched audio is 

difficult, as not many software can successfully 

transcribe a multilingual audio file into heterogenous text 

correctly.  

A program using Heterogenous Language Detection 

and Re-transcription (HLDR) 1  for multilingual audio 

files with Japanese and English code-switching was 

developed to address existing gaps in functionality of 

current STT software. There exists some audio-to-text 

transcription software that resolves constituents of this 

problem—the task of transcribing one language at a 

time.   

For instance, Adobe Premiere Pro’s automatic 

transcription feature immediately auto-transcribes audio. 

 
1 https://github.com/LearnML-Me/HLDR/  

However, when the user code-switches from English and 

Japanese, the closed captions generate incomprehensible 

characters. A similar phenomenon is observed in 

OpenAI’s Whisper. After the first 30 seconds of the 

audio file, the transcription outputs romaji for Japanese 

characters if the speaker code-switches from English to 

Japanese. If a language like Japanese is specified using a 

parameter from the beginning, it will completely 

translate the English sentence into Japanese, regardless 

of whether the speaker has code-switched or not. 

However, if the speaker code-switches within the first 30 

seconds of the audio file, the software accurately 

transcribes the Japanese portion of the code-switched 

audio with the appropriate katakana, kanji, and hiragana, 

and the English portion of the code-switched audio with 

correct English words. 

Another technology that transcribes spoken 

language is speech diarization, which involves 

determining "who spoke when", distinguishing between 

speech and non-speech sounds, and marking speaker 

changes within the identified speech. [2] However, 

speech diarization could not be used for this specific 

issue of recognizing code-switched language spoken by 

one single person. Speech diarization requires multiple 

distinct acoustic features to identify the two borders 

between CS and non-CS speech. This paper focuses on 

accurately transcribing CS from one speaker with 

uniform acoustic features in their speech, making speech 

diarization an unsuitable technology. 

Multilingual transcription technology faces 

challenges in accuracy due to existing technologies’ sole 

focus on monolingual transcription. [3] Creating STT 

software with the capability of handling code-switching 

between English and Japanese will make video subtitles 

more accessible to more people, reducing the time for 

video editing and transcription for those who 
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code-switch between English and Japanese in their 

videos. In addition, creating a STT will open more doors  

in the world of STT for East Asian languages. For 

instance, Japanese, Chinese, Korean, and English have 

mutually borrowed loanwords, 

 

 allowing for  

increased efficiency in creating these language models.  

2 Method 

In the realm of linguistic analysis, a novel concept, 

"noise" is introduced within the context of 

code-switching for this paper. Unlike the conventional 

understanding of noise as auditory interference, in this 

context, it denotes the unintended linguistic distortions 

that arise during the transcription of code-switched 

conversations. In audio files with code-switched 

language, noise emerges as an inadvertent byproduct. 

This distortion materializes when transcription software 

encounters code-switching instances, unable to 

distinguish between the original language and the 

interjected foreign language. Consequently, the 

transcribed output consists of unfamiliar and seemingly 

nonsensical words in the original language, illustrating 

the challenges inherent in accurately capturing the 

complexity of code-switched language. This paper aims 

to eliminate “noise” from transcripts that deal with 

code-switched language. “noise” is taken out by a 

distinction of where to start the and stop a transcription 

in one language and append the transcription in the 

second language. To accomplish this task, two English 

language models and one Japanese model are utilized to 

find the noise relationship between them and merge them 

into an English and Japanese heterogenous final 

transcription. Two English transcriptions are used to find 

the commas between each phrase. To detect the noise, it 

is understood that the English translation has a relatively 

low word error rate (WER). WER is the ratio of 

substitutions (S), deletions (D), and insertions (I) of 

words in a transcript to the overall number of spoken or 

intended words (N1).  

 

Figure 2 

[4] Considering this, the two English transcriptions are 

highly likely to be very similar due to its WER. 

Therefore, a phrase that has a high WER when 

comparing the two English transcription files will be 

detected as “noise”. In HLDR approach, proper 

capitalization is ignored. Similarly, the same HLDR 

principle may be used with the Japanese STT software, 

but an appropriate Japanese STT software other than 

dictation-kit was not found with a satisfactory WER as 

of the writing of this paper. 

Materials: Julius [5], dictation-kit [6], DeepSpeech [7], 

running on Ubuntu 22.04 LTS, an audio recording 

containing both English and Japanese sentences. 

3 Results 

In this trial a heterogenous code-switched transcription 

was tested. 

Original intended audio: “the first one, 全部 食べ て 

も 問題 ない, I have no problem eating all of this.” 

Phase I: 

This phase is to get the raw speech-to-text (STT) text 

file. 

Transcriptions were made through neural networks. 

Types include Deep Learning Neural Networks (DNN), 

Figure 1 
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Recurrent Neural Network (RNN), and Convolutional 

neural network (CNN). 

A difference between the Julius model and DeepSpeech 

model transcripts Julius transcribed it as “I have no 

problem eating all this” while DeepSpeech transcribed 

the audio as “I have no problem eating all of this”. To 

mitigate this concern, WER was used; there was one 

word that caused the discrepancy: “of”, with a WER of 

12% when compared to the full phrase. When compared 

to WER in other contexts outside of this paper, such as 

the WER for Wit (25.87%), a free speech-to-text 

software. [8] HLDR was used on the third portions of 

EN1 and EN2 respectively to produce the final output, 

which is “I have no problem eating all this”. To 

intelligently choose the most accurate final output based 

on nuances and semantics of each word using advanced 

NLP libraries like spaCy and MeCab is left to future 

research as improvement. 

The existing ASR language models were leveraged to 

process the audio file. On 3 platforms: dictation-kit, 

English and DeepSpeech, after running the processor 

binary by specifying a language model, the essential 

outcome of the recognized speech text was extracted 

from the result with the combination of Linux commands 

“grep” and “sed”, the preliminary file JA.txt, EN1.txt, 

EN2.txt are created respectively. The content is like the 

following without quotation mark: 

• Japanese STT: dictation-kit (JA.txt) 

“ 

と 過ごす と 、 全部 食べ て も 問題 ない 、 間 

の プロ 入り の です 。 

” 

• English STT: Julius (EN1.txt) 

“ 

the first one, timber habitable one nine nine, I have no 

problem eating all this 

” 

• English STT: DeepSpeech (EN2.txt) 

“ 

the first one dim with habit demon the knight I have no 

problem eating all of this 

” 

Phase II 

This phase is the key portion of this article. A Python 

script is used to process 3 raw transcription files. The 

basic functionality is like the following: 

• Read 3 files and store them as 3 variables 

• Tokenize the strings by converting to string lists 

• Scan and record the location of comma “,” 

• Normalize the strings by removing comma(s) 

• Use diff Python library to get the difference of 

EN1 and EN2 tokenized strings 

• Pick up the common words into a new list and 

identify the English noise section. 

• Skip the same amount of noise from the 

Japanese result and inject the correct Japanese 

sentence into the English noise section. 

• Restore the commas in their recorded locations 

(from step 3) in the combined string. 

• Combine the string list to get the combined 

string. 

  

If I section out the outputs from dictation-kit, 

DeepSpeech, and Julius into respective Python lists, I 

can compare their phrases with each other. (Figure 3) 

 

Figure 3 

Each list has three items. Focusing on EN1 and EN2, 

each word inside the first and third items are nearly 

identical. Conversely, all the words inside of the second 

item in the list are different. The second item is the 

portion in which the Japanese was being spoken. This 

scenario is visualized in Figure 1. In this case, I utilize 

this pattern in hopes of writing a code that substitutes the 

inconsistent portion of item 2 from transcription. The 

code that could implement this is referenced in Figure 3.   

4 Discussion 

There exist several limitations to the method used in this 

research paper. First, because this method can be 

regarded as meta transcription, its quality is variable 

based on the underlying transcription software’s quality 

and language model training hours. Its accuracy also 

depends on the field of the terminology between the 

spoken words/sentences and the trained model. The 

WER must be at a minimum.  

In the course of time, this problem will gradually be 
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improved and solved, but ultimately it needs a different 

approach to address the issue at its foundational level. In 

addition, the quality of the output when utilizing this 

paper’s approach varies heavily on the spoken words and 

sentences. Correct Japanese punctuation in the 

transcription such as commas and periods are 

inconsistent, which will cause the script to have 

difficulty finding the border of the correct Japanese 

words and noise coming from English. This can be 

attributed to the fact that only one Japanese language 

model has been identified that meets the specified 

requirements, which include accurate punctuation and a 

fully functional translation encompassing kanji, katakana, 

and hiragana. HLDR could be further improved by 

understanding instances when Japanese kanji is written 

as hiragana and vice versa, and add the functionality of 

allowing the user to choose between options.

There also exist several directions for future research on 

this topic. First is expanding the English transcription 

service from 2 to many, to get the best accuracy of 

English transcription. In addition, expanding the 

Japanese transcription service from 1 to many is 

imperative to get the most accurate insertion of Japanese 

code-switched transcription. Furthermore, expanding this 

method of accurate transcription of code-switched 

speech requires software libraries spaCy, NLTK, and 

MeCab for advanced NLP tasks such as semantic 

analysis. The current strategy in this paper can only 

transcribe code-switched phrases, not individual words. 

Semantic analysis will allow for accurate insertion of 

specific words in text by considering the context of the 

surrounding sentence. Another limitation is that of the 

scope of the transcription ability. This paper’s approach 

is adequate at transcribing code-switched speech with 

one sentence is English, and one is Japanese, etc. 

However, tasks such as transcribing a spoken sentence 

containing mixed words instead of mixed phrases 

between English and Japanese is beyond the capabilities 

of the software. Finding a solution to this scenario would 

require deep analysis of the transcription using advanced 

NLP processing software such as spaCy or NLTK.  

Another direction is to statistically adopt the best 

translation of Japanese. The method would be more 

diverse if it included more languages, such as 

recognizing, parsing, and transcribing Chinese and 

English code-switched sentences. Due to the loanwords 

that exist between Japanese and Chinese, this method 

would be most practical. By extension, it is worth 

considering engineering a program that can process 

low-resource languages. 

5 Conclusion 

In this paper, a strategy is introduced to merge English 

and Japanese transcription software together using two 

English and one Japanese transcription software and a 

Python script to find appropriate words to merge them 

together. Any combination of STT software, whether 

commercial or open source, is the user’s choice and may 

be used in the HLDR method, opening the door to 

meta-transcription. Similar to a technology term, 

Redundant Array of Independent Disks (RAID), which 

use multiple disks and combine them together to get a 

better result in terms of speed and availability, [9] a 

higher number of STT used in the HLDR method is 

predicted to increase the accuracy and lower the cost of 

the combined result. 
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