
Creating Heterogenous Transcription of English and Japanese on

a Multilingual Audio File

Yuika Sun

Los Altos High School, CA 94022, USA

yuhyeung@gmail.com

Abstract

Code-switching (CS) is the switching between

multiple languages in speech. Current literature on

code-switching transcription technology has been

successful in translating the CS transcripts into one

language but there yet to exist satisfactory technology to

accurately transcribe one single speaker’s CS audio into

CS transcripts. Current speech-to-text (STT) technology,

although produces accurate transcriptions, is limited to

monolingual sentences. In this paper, the focus is on an

unexplored area: expanding STT to English and Japanese

CS language transcription without utilizing translation

software.

1 Introduction

Bilingualism, the ability to speak two languages, is

prevalent—more than half of the world is bilingual. [1]

This leads many to code-switch, a phenomenon where

one speaks multiple languages interchangeably in spoken

sentences.

Accurately transcribing code-switched audio is

difficult, as not many software can successfully

transcribe a multilingual audio file into heterogenous text

correctly.

A program using Heterogenous Language Detection

and Re-transcription (HLDR) 1 for multilingual audio

files with Japanese and English code-switching was

developed to address existing gaps in functionality of

current STT software. There exists some audio-to-text

transcription software that resolves constituents of this

problem—the task of transcribing one language at a

time.

For instance, Adobe Premiere Pro’s automatic

transcription feature immediately auto-transcribes audio.

1 https://github.com/LearnML-Me/HLDR/

However, when the user code-switches from English and

Japanese, the closed captions generate incomprehensible

characters. A similar phenomenon is observed in

OpenAI’s Whisper. After the first 30 seconds of the

audio file, the transcription outputs romaji for Japanese

characters if the speaker code-switches from English to

Japanese. If a language like Japanese is specified using a

parameter from the beginning, it will completely

translate the English sentence into Japanese, regardless

of whether the speaker has code-switched or not.

However, if the speaker code-switches within the first 30

seconds of the audio file, the software accurately

transcribes the Japanese portion of the code-switched

audio with the appropriate katakana, kanji, and hiragana,

and the English portion of the code-switched audio with

correct English words.

Another technology that transcribes spoken

language is speech diarization, which involves

determining "who spoke when", distinguishing between

speech and non-speech sounds, and marking speaker

changes within the identified speech. [2] However,

speech diarization could not be used for this specific

issue of recognizing code-switched language spoken by

one single person. Speech diarization requires multiple

distinct acoustic features to identify the two borders

between CS and non-CS speech. This paper focuses on

accurately transcribing CS from one speaker with

uniform acoustic features in their speech, making speech

diarization an unsuitable technology.

Multilingual transcription technology faces

challenges in accuracy due to existing technologies’ sole

focus on monolingual transcription. [3] Creating STT

software with the capability of handling code-switching

between English and Japanese will make video subtitles

more accessible to more people, reducing the time for

video editing and transcription for those who

― 1264 ―

言語処理学会 第30回年次大会 発表論文集（2024年3月）

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

code-switch between English and Japanese in their

videos. In addition, creating a STT will open more doors

in the world of STT for East Asian languages. For

instance, Japanese, Chinese, Korean, and English have

mutually borrowed loanwords,

 allowing for

increased efficiency in creating these language models.

2 Method

In the realm of linguistic analysis, a novel concept,

"noise" is introduced within the context of

code-switching for this paper. Unlike the conventional

understanding of noise as auditory interference, in this

context, it denotes the unintended linguistic distortions

that arise during the transcription of code-switched

conversations. In audio files with code-switched

language, noise emerges as an inadvertent byproduct.

This distortion materializes when transcription software

encounters code-switching instances, unable to

distinguish between the original language and the

interjected foreign language. Consequently, the

transcribed output consists of unfamiliar and seemingly

nonsensical words in the original language, illustrating

the challenges inherent in accurately capturing the

complexity of code-switched language. This paper aims

to eliminate “noise” from transcripts that deal with

code-switched language. “noise” is taken out by a

distinction of where to start the and stop a transcription

in one language and append the transcription in the

second language. To accomplish this task, two English

language models and one Japanese model are utilized to

find the noise relationship between them and merge them

into an English and Japanese heterogenous final

transcription. Two English transcriptions are used to find

the commas between each phrase. To detect the noise, it

is understood that the English translation has a relatively

low word error rate (WER). WER is the ratio of

substitutions (S), deletions (D), and insertions (I) of

words in a transcript to the overall number of spoken or

intended words (N1).

Figure 2

[4] Considering this, the two English transcriptions are

highly likely to be very similar due to its WER.

Therefore, a phrase that has a high WER when

comparing the two English transcription files will be

detected as “noise”. In HLDR approach, proper

capitalization is ignored. Similarly, the same HLDR

principle may be used with the Japanese STT software,

but an appropriate Japanese STT software other than

dictation-kit was not found with a satisfactory WER as

of the writing of this paper.

Materials: Julius [5], dictation-kit [6], DeepSpeech [7],

running on Ubuntu 22.04 LTS, an audio recording

containing both English and Japanese sentences.

3 Results

In this trial a heterogenous code-switched transcription

was tested.

Original intended audio: “the first one, 全部 食べ て

も 問題 ない, I have no problem eating all of this.”

Phase I:

This phase is to get the raw speech-to-text (STT) text

file.

Transcriptions were made through neural networks.

Types include Deep Learning Neural Networks (DNN),

Figure 1

― 1265 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Recurrent Neural Network (RNN), and Convolutional

neural network (CNN).

A difference between the Julius model and DeepSpeech

model transcripts Julius transcribed it as “I have no

problem eating all this” while DeepSpeech transcribed

the audio as “I have no problem eating all of this”. To

mitigate this concern, WER was used; there was one

word that caused the discrepancy: “of”, with a WER of

12% when compared to the full phrase. When compared

to WER in other contexts outside of this paper, such as

the WER for Wit (25.87%), a free speech-to-text

software. [8] HLDR was used on the third portions of

EN1 and EN2 respectively to produce the final output,

which is “I have no problem eating all this”. To

intelligently choose the most accurate final output based

on nuances and semantics of each word using advanced

NLP libraries like spaCy and MeCab is left to future

research as improvement.

The existing ASR language models were leveraged to

process the audio file. On 3 platforms: dictation-kit,

English and DeepSpeech, after running the processor

binary by specifying a language model, the essential

outcome of the recognized speech text was extracted

from the result with the combination of Linux commands

“grep” and “sed”, the preliminary file JA.txt, EN1.txt,

EN2.txt are created respectively. The content is like the

following without quotation mark:

• Japanese STT: dictation-kit (JA.txt)

“

と 過ごす と 、 全部 食べ て も 問題 ない 、 間

の プロ 入り の です 。

”

• English STT: Julius (EN1.txt)

“

the first one, timber habitable one nine nine, I have no

problem eating all this

”

• English STT: DeepSpeech (EN2.txt)

“

the first one dim with habit demon the knight I have no

problem eating all of this

”

Phase II

This phase is the key portion of this article. A Python

script is used to process 3 raw transcription files. The

basic functionality is like the following:

• Read 3 files and store them as 3 variables

• Tokenize the strings by converting to string lists

• Scan and record the location of comma “,”

• Normalize the strings by removing comma(s)

• Use diff Python library to get the difference of

EN1 and EN2 tokenized strings

• Pick up the common words into a new list and

identify the English noise section.

• Skip the same amount of noise from the

Japanese result and inject the correct Japanese

sentence into the English noise section.

• Restore the commas in their recorded locations

(from step 3) in the combined string.

• Combine the string list to get the combined

string.

If I section out the outputs from dictation-kit,

DeepSpeech, and Julius into respective Python lists, I

can compare their phrases with each other. (Figure 3)

Figure 3

Each list has three items. Focusing on EN1 and EN2,

each word inside the first and third items are nearly

identical. Conversely, all the words inside of the second

item in the list are different. The second item is the

portion in which the Japanese was being spoken. This

scenario is visualized in Figure 1. In this case, I utilize

this pattern in hopes of writing a code that substitutes the

inconsistent portion of item 2 from transcription. The

code that could implement this is referenced in Figure 3.

4 Discussion

There exist several limitations to the method used in this

research paper. First, because this method can be

regarded as meta transcription, its quality is variable

based on the underlying transcription software’s quality

and language model training hours. Its accuracy also

depends on the field of the terminology between the

spoken words/sentences and the trained model. The

WER must be at a minimum.

In the course of time, this problem will gradually be

― 1266 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

improved and solved, but ultimately it needs a different

approach to address the issue at its foundational level. In

addition, the quality of the output when utilizing this

paper’s approach varies heavily on the spoken words and

sentences. Correct Japanese punctuation in the

transcription such as commas and periods are

inconsistent, which will cause the script to have

difficulty finding the border of the correct Japanese

words and noise coming from English. This can be

attributed to the fact that only one Japanese language

model has been identified that meets the specified

requirements, which include accurate punctuation and a

fully functional translation encompassing kanji, katakana,

and hiragana. HLDR could be further improved by

understanding instances when Japanese kanji is written

as hiragana and vice versa, and add the functionality of

allowing the user to choose between options.

There also exist several directions for future research on

this topic. First is expanding the English transcription

service from 2 to many, to get the best accuracy of

English transcription. In addition, expanding the

Japanese transcription service from 1 to many is

imperative to get the most accurate insertion of Japanese

code-switched transcription. Furthermore, expanding this

method of accurate transcription of code-switched

speech requires software libraries spaCy, NLTK, and

MeCab for advanced NLP tasks such as semantic

analysis. The current strategy in this paper can only

transcribe code-switched phrases, not individual words.

Semantic analysis will allow for accurate insertion of

specific words in text by considering the context of the

surrounding sentence. Another limitation is that of the

scope of the transcription ability. This paper’s approach

is adequate at transcribing code-switched speech with

one sentence is English, and one is Japanese, etc.

However, tasks such as transcribing a spoken sentence

containing mixed words instead of mixed phrases

between English and Japanese is beyond the capabilities

of the software. Finding a solution to this scenario would

require deep analysis of the transcription using advanced

NLP processing software such as spaCy or NLTK.

Another direction is to statistically adopt the best

translation of Japanese. The method would be more

diverse if it included more languages, such as

recognizing, parsing, and transcribing Chinese and

English code-switched sentences. Due to the loanwords

that exist between Japanese and Chinese, this method

would be most practical. By extension, it is worth

considering engineering a program that can process

low-resource languages.

5 Conclusion

In this paper, a strategy is introduced to merge English

and Japanese transcription software together using two

English and one Japanese transcription software and a

Python script to find appropriate words to merge them

together. Any combination of STT software, whether

commercial or open source, is the user’s choice and may

be used in the HLDR method, opening the door to

meta-transcription. Similar to a technology term,

Redundant Array of Independent Disks (RAID), which

use multiple disks and combine them together to get a

better result in terms of speed and availability, [9] a

higher number of STT used in the HLDR method is

predicted to increase the accuracy and lower the cost of

the combined result.

References

[1] Ana Inés Ansaldo, Karine Marcotte, Lilian Scherer,

and Gaelle Raboyeau. Language therapy and bilingual

aphasia: Clinical implications of psycholinguistic and

neuroimaging research. In Journal of Neurolinguistics,

Vol. 21, No.6, pp. 1, 2008.

[2] –. ScienceDirect. (Online) (Access Date: 1/3/24.)

https://www.sciencedirect.com/topics/computer-science/

speaker-diarization.

[3] –. Machine Learning Research. (Online) (Access

Date: 1/3/24.)

https://machinelearning.apple.com/research/towards-real

-world.

[4] –. ResearchGate. (Online) (Access Date: 1/3/24.)

https://www.researchgate.net/publication/221488965_An

_Empirical_Analysis_of_Word_Error_Rate_and_Keywo

rd_Error_Rate.

[5] A. Lee and T. Kawahara: Julius v4.5 (Online)

(Access Date: 1/3/24) https://doi.org/10.5281/zenodo.25

30395.

[6] –. Github dictation-kit. (Online) (Access Date:

1/3/24) https://github.com/julius-speech/dictation-kit.

― 1267 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

[7] Awni Hannun, Carl Case, Jared Casper, Bryan
Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,

Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and

Andrew Y. Ng Deep Speech: Scaling up end-to-end

speech recognition arXiv preprint arXiv:1412.5567v2,

2014.

[8] –. National Library of Medicine. (Online) (Access
Date: 1/6/24.)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC725640
3/.
[9] Christian Zoubek, Sabine Seufert, and Andreas
Dewald. Generic RAID reassembly using block-level
entropy. In Digital Investigation, Vol. 16, pp. 1, 2016.

― 1268 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

