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Abstract
Domestic robots are intended to coexist with humans,

providing assistance and companionship. A key element to
realize these interactions is life-long learning from their en-
vironment. Even with promising progress, the state of the
art remains far from realizing life-long robotic cognition,
complicated by the complexity of multi-modal, ambigu-
ous real-world data and the limits of storage capacity. The
Guardian Robot Project at RIKEN is developing Indy, an
autonomous helper robot. In this work we present the first
step towards Indy’s long-term memory system, inspired
by two concepts from cognitive psychology: a three-store
memory model, and forgetting heuristics that help retain
useful information and discard irrelevant sensor data. We
outline the general framework of this system, and evalu-
ate the impact these techniques have on the total size of
stored memory using metrics to estimate the space growth
of memory and its accuracy.

1 Introduction
The design and development of interactive cognitive

robots that can coexist with humans in their daily lives
is challenging. One of the biggest challenges is long-term
functioning, as the robot would need to gather and store
large amounts of continuous multi-modal data over long
periods of time (preferably years) in order to make deci-
sions that are relevant to its function. Thus, for long-term
functioning, we need to consider the design of memory
management; or, how data is represented, prioritized, ac-
cessed and maintained.

At RIKEN Guardian Robot Project, we are working on
an autonomous robot with aims of being a long-term com-
panion to humans. This includes the design and devel-
opment of a memory system capable of functioning ef-
fectively on the long-term, by using multi-store and for-
getfulness concepts inspired by cognitive psychology. In
this paper we introduce this memory system, and show the
results of an initial evaluation on the effect of the imple-
mented heuristics on the total size of the memory in some
interactive scenarios.

2 Autonomous Robot Indy
Indy, shown in Figure 1, is being built as an autonomous

robot capable of coexisting with people in spaces built for
humans. It has sensors that give it the following capabili-
ties:

• Object Recognition using a YOLOv8 [1] model en-
hanced with SORT-based [2] tracking.

• Person Recognition derived from its object recogni-
tion module, with additional pose keypoint tracking
via OpenPifPaf [3].

• Scene Graph Generation through a model trained on
the Visual Genome [4] dataset.

• Speech Recognition detects speakers using LIDAR-
enhanced location detection and noise reduction [5]
and transcribes the isolated sound using a fine-tuned
model based on Whisper-large-v2 [6].

• Chit-chat Responses using the Japanese Language
Transformer model [7] and text-to-speech synthesis
with a custom voice by ReadSpeaker1）.

1） https://readspeaker.jp/
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• Data storage: Indy uses an on-hardware MongoDB2）

database to store persistent memory.

Indy’s design is modular, with many of these modules in
active development. These recognition systems will be im-
proved and enjoined with other systems. Thus, the memory
system is designed with modularity and interchangeability
in mind.

Figure 1 Autonomous Robot Indy

3 Memory System
We started designing Indy’s memory system with the

aim of making efficient use of memory space, minimizing
the growth over long periods of time. To that end, we took
inspiration from the most efficient memory usage we know:
the human brain. In particular, we looked at concepts of
cognitive psychology to develop systems aimed at reducing
memory usage growth: multi-store memory, and forgetting
curves.

Other memory frameworks: Cognitive psychology
has also inspired the development of cognitive frameworks,
such as ACT-R [8] and SOAR [9], that simulate the way
information is processed in the brain, which includes pro-
cessing memory. These frameworks have been used with
various degrees of success in various robotics applications,
such as route mapping and control [10, 11], and human
interaction [12, 13]. While the work we present here is

2） https://www.mongodb.com/

also inspired by the same principles, the implementation
we are aiming for does not seek the replicate / simulate
human thought processes, but to provide a foundation to
build a cognitive model that fits the needs of Indy’s own
development and systems.

3.1 Three-store Memory System

Atkinson-Shiffrin’s Multi-Store model [14] identifies
three memory “levels”, based on how much of a stimuli
is used and retained, and for how long. Inspired on this
model, we designed a three-store memory system for Indy:

• Sensor Memory can be thought as a buffer, temporar-
ily storing the output of Indy’s recognition systems.
This store works at the same rate as recognition, and
is cleared regularly as its data is used.

• Short-Term Memory, also known as “working mem-
ory”, digests the data from sensor memory into
“chunks” representing the same entity or event. This
way, a single object “detected” multiple times is rec-
ognized as the same object, and stored only once.
Repeated perceptions of the same object trigger a “re-
call” of the same object, which increases its chunk’s
impression and longevity. If a chunk is not “recalled”
frequently enough, it is forgotten.

• Long-Term Memory converts chunks that have main-
tained enough relevance into a different representa-
tion, building relational and temporal relationships
and an internal narrative. This system is inspired by
episodic memories of humans.

For this paper, we developed and evaluated the sensor
and short-term memory modules.

3.2 Forgetfulness Heuristics

Forgetfulness is a mechanism that allows the human
brain to maintain life-long learning within a physically
limited storage. Since they were first studied by German
psychologist Hermannn Ebbinghaus [15], the general be-
havior of forgetfulness has been codified as probability
curves, expressing the decay of the likelihood of remem-
bering a given piece of data. For Indy, we designed two
types of “forgetfulness heuristics”: forgetting curves, and
compilation rules.
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3.2.1 Forgetting curves
For Indy’s forgetting curves, we wanted an equation

whose behavior could be controlled and adapted parametri-
cally, in order to represent different memory behaviors (i.e.
different modalities). We chose a modified Weibull prob-
ability curve used in a large-scale memory and forgetting
study [16]. The Weibull forgetting function in Equation (1)
represents the probability that a given memory chunk is for-
gotten given an initial memory strength 𝜇 at a time 𝑡, with
a decay parameter 𝑎, and a early-late forgetting balance
parameter 𝑑.

𝑝(𝑡) = 𝜇 𝑒𝑥𝑝
(
(𝑎𝑡/𝑑)𝑑

)
(1)

In Indy’s system, we chose to make this a deterministic
system: instead of treating it as a probability, a memory
“chunk” whose curve value drops below a given threshold
is considered safe to forget.

3.2.2 Compilation Rules
Sensor memory acts as a buffer for the recognition sys-

tems. Each recognition system produces data at regular
intervals; for example, object recognition outputs results
once every 1/30𝑡ℎ of a second. To store redundant recog-
nition results more efficiently, we need compilation rules
that outline how the sensor memory data should be man-
aged: if it is too redundant, it is safe to discard; if not, then
represent the perceived data into a more compact repre-
sentation that also manifests how the subject of perception
may have changed.

For this work, we implemented and evaluated a subset
of the recognition systems, with the following compilation
rules:

• Object recognition returns centroids and viewport co-
ordinates; our memory uses these to reconstruct an
approximation of a box that encloses the object. Ev-
ery new perception of the same object can potentially
update this enclosure, if a new perception of an iden-
tical object is within/near the abstract box. Addition-
ally, we determine the object’s importance based on
its proximity to Indy and its prominence within the
viewport.

• Person recognition follows similar rules to object
recognition, but also computing the similarity (mea-
sured as cosine distance) in the perceived person’s

pose to an existing record in short-term memory.
• Speech Recognition and Generation sensors produce

separate output, and are kept as such in sensor mem-
ory. Short-term memory assigns them to a single
storage, in chronological order.

4 Evaluation and Experiments
For this initial implementation, we want to look into a

question: as Indy accumulates new data, how is the old
data in memory changed? In particular, we want to focus
on how memory size changes in relations to queries made
to the memory system as time passes, when using a multi-
store memory with forgetfulness. We prepared a set of 100
queries in natural language, representing topics that a user
could reasonably ask Indy to recall. These queries involve
objects and people that can be found with relative frequency
in Indy’s environment at the Guardian Robot Project, as
well as subjects that are not available to and could not
possibly be perceived by Indy. We stored all data published
by Indy’s sensors over a 24-hour period, during which
members of Guardian Robot Project walked naturally in
the office space surrounding the robot, occasionally talking
with Indy and placing objects within the robot’s field of
vision to reinforce them in memory. The data was then
moved to a stand-alone computer, where it was used to
simulate two types of memory systems: a ”sensor memory-
only” system, and a ”two-store memory with forgetting”
system. During this simulation, we chose three moments
in which to make the 100 queries, at 𝑡 = [300, 3600, 86400]
seconds. For each query, we measured the following data:

• Number of Entries in the database that were consulted
to answer the query;

• Query Execution Time in milliseconds, as reported by
MongoDB’s engine;

• Number of Memory Records Returned as a response
to the query;

• Accuracy, or whether the query resulted in a record
found in the database, and the record matched the
original data published by the sensors.

5 Results and Analysis
The average execution results for simulating a full sensor

memory system (Table 1) and a two-store memory system
(Table 2) show that the second system provides a reduc-
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tion on all measurements of multiple orders of magnitude,
suggesting the reduction in size could also have a deeper
impact in overall system performance by returning results
much faster, even after a long amount of time has passed.

Accuracy, Recall [17] and F1 Score [18] are often used to
measure accuracy in natural language processing systems.
We are omitting the results for the full sensor memory
system because they would mirror the original database,
so all measures have a value of 1. For the results in the
two-store memory system in Table 3, and as far as memory
alone is concerned, the system does not lose any significant
information, even with a significantly smaller number of
database entries. After a full 24 hours, we see the effect
of “forgetfulness”, with a reduction of accuracy across all
measures, as the queries request objects and topics that have
not been frequently ”rehearsed”. We suspect this number
is particularly high because of the limited area in which
Indy operated during data collection, which caused a near-
constant perception of the same objects in the environment.

Finally, we computed the ratio of the same execution
measurement averages between the full sensor memory
and the two-store memory in Table 4. Of note is the rate
at which the ratio metrics change over time: the decrease
suggests that not only are the sizes in the two-store memory
smaller, but their growth is orders of magnitude slower as
well.

𝑡 (secs) N.Entries Exec.Time Doc.Ret.

300 2733.72 2.18 33.45
3600 23629.65 41.05 312.69

86400 411725.46 1070.68 9762.77

Table 1 Avg. exec. data for full sensor memory queries

𝑡 (secs) N.Entries Exec.Time Doc.Ret.

300 24.31 0.74 0.43
3600 144.40 0.24 2.30

86400 2185.88 2.09 34.23

Table 2 Avg. exec. data for two-store forgetful memory queries

𝑡 (secs) Accuracy Recall F1 Score

300 1.00 1.00 1.00
3600 1.00 1.00 1.00

86400 0.78 0.70 0.83

Table 3 Accuracy measures of short-Term memory system

𝑡 (secs) N.Entries Exec.Time Doc.Ret.

300 0.00889 0.33945 0.01286
3600 0.00611 0.00585 0.00736

86400 0.00531 0.00195 0.00351

Table 4 Ratio of avg. between full and two-store memory
systems

6 Conclusions and Future Work
In this work, we presented the memory system frame-

work for an autonomous robot. This memory system stores
information from a robot’s recognition streams and, in-
spired by research in cognitive psychology, select data to
“compile”, keep or “forget” in order to reduce its total size
growth over long-term periods of time. We presented the
general process that drives an initial partial set of mod-
ules for this memory system, and carried out a groundwork
evaluation of these modules to determine their impact on
memory size and retrieval. This evaluation shows that for
the implemented modules, even a partially-implemented
memory system is capable of reducing the memory size by
orders of magnitude without drastic loss of data.

In our future work, we will further develop this frame-
work to be a full three-store memory system including
long-term memory, and investigate the effectiveness of var-
ious representations of memory, such as a narrative first-
person memory. In our initial implementation, we utilized
re-observation as the trigger of recalling; however, using
different modalities for such triggers is essential. For exam-
ple, information that someone was talking about an actual
object will be a trigger for recalling the observation of
object recognition. We will implement such cross-modal
recalling to improve our forgetting mechanism.

Acknowledgements
A part of this work is supported by JSPS Kaken Grant

Number 23K19984 and 22H04873.

References
[1] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Yolo by

ultralytics, October 2023.
[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE International Conference on Image Processing
(ICIP), pp. 3464–3468. IEEE, sep 2016.

[3] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Open-
pifpaf: Composite fields for semantic keypoint detection

― 981 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



and spatio-temporal association. In IEEE Transactions
on Intelligent Transportation Systems, Vol. 23, pp.
13498–13511. arXiv, 2022.

[4] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis
Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bern-
stein, and Fei-Fei Li. Visual genome: Connecting language
and vision using crowdsourced dense image annotations.
In International Journal of Computer Vision, Vol. 123,
pp. 32–73. Springer, 2017.

[5] Carlos T. Ishi, Chaoran Liu, Jani Even, and Norihiro
Hagita. Hearing support system using environment sensor
network. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1275–
1280, 2016.

[6] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision, 2022.

[7] Hiroaki Sugiyama, Masahiro Mizukami, Tsunehiro Ari-
moto, Hiromi Narimatsu, Yuya Chiba, Hideharu Nakajima,
and Toyomi Meguro. Empirical analysis of training strate-
gies of transformer-based japanese chit-chat systems. In
2022 IEEE Spoken Language Technology Workshop
(SLT), pp. 685–691. arXiv, 2023.

[8] Frank E. Ritter, Farnaz Tehranchi, and Jacob D. Oury. Act-
r: A cognitive architecture for modeling cognition. WIREs
Cognitive Science, Vol. 10, No. 3, p. e1488, 2019.

[9] John E. Laird. Introduction to soar, 2022.
[10] William G. Kennedy, Magdalena D. Bugajska, Matthew

Marge, William Adams, Benjamin R. Fransen, Den-
nis Perzanowski, Alan C. Schultz, and J. Gregory
Trafton. Spatial representation and reasoning for human-
robot collaboration. In Proceedings of the 22nd Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’07, p. 1554–1559, Vancouver, British Columbia,
Canada, 2007. AAAI Press.

[11] John E. Laird, Keegan R. Kinkade, Shiwali Mohan, and
Joseph Zhen Ying Xu. Cognitive robotics using the soar
cognitive architecture. In CogRob@AAAI, 2012.

[12] Adriana Bono, Agnese Augello, Giovanni Pilato, Filippo
Vella, and Salvatore Gaglio. An act-r based humanoid
social robot to manage storytelling activities. Robotics,
Vol. 9, No. 2, 2020.

[13] Sonja Stange, Teena Hassan, Florian Schröder, Jacque-
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