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Abstract
Pupular transformer-based language models are often

constrained with a limited number of input length, result-
ing in subpar performance on the task of long-text sum-
marisation. Prior work has attempted to alter the model’s
internal architecture to accommodate longer inputs. Even
if a model supports longer input texts, limited RAMs in
university laboratories and edge devices prohibit us from
unleashing that input length. We, thus, explore the task
of long-text summarisation based on Recurrent Memory
Transformer (RMT) which provides an external memory
for the transformer-based models without modifying the
internal structure, and further proposed RMT-Summ. To
demonstrate the validity of RMT-Summ, we introduce
an incremental summarisation task, and built a dedicated
dataset from PubMed medical articles containing struc-
tured abstracts. Our experimental results show that an
RMT-Summ powered BART model performed better than
the baseline original BART by 1.24 points in ROUGE-1.

1 Introduction
Large language Models (LLMs) play a pivotal role in

NLP. Self-attention, as the foundation of LLMs, suffers
from limitation of the input length due to the quadratic
computational complexity. Pupular transformer-based lan-
guage models are often constrained with a limited number
of input tokens, such as around 1K to 4K. Since this con-
straint harms long-text processing tasks (e.g. summarisa-
tion and complex dialogue), previous work has attempted
modifications to the self-attention mechanism to accom-
modate longer inputs. Despite the model’s support for
longer text inputs, the increased length places a burden on
RAM, making the utilization of the model less feasible for
typical university laboratories and edge devices.

Figure 1 Overview of Incremental summarisation task: The
source text is firstly segmented based on its discourse structure.
Subsequently, each segment is fed into the summarizer to generate
a summary that encapsulates all previously mentioned content.

Figure 2 Overview of RMT-Summ structure for Incremental
Summarisation task.

To address the former constraint, Recurrent Memory
Transformer (RMT) [1, 2] was proposed, which is simple
yet effective external memory mechanism for the models
suffering from limited input length, by directly incorpo-
rating randomly initialized special tokens into the prefix
of the input embeddings. Despite the excellent perfor-
mance of RMT in Natural Language Understanding tasks
such as enwik8 and WikiText-103, its effectiveness in Nat-
ural Language Generation remains to be validated. Hence,
we apply the idea of RMT into an encoder-decoder ar-
chitecture, aligning better with the sequence-to-sequence
task. Furthermore, we refine the training objective in this
context, referring to this variant as RMT-Summ. Specifi-
clly, for an extremely long text, we initially segment it and
then process each segment in turn. During this process,
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the memory tokens of RMT-Summ are inserted into the
embeddings of the input to preserve the memory of previ-
ous segment through the depth propagation, and facilitate
memory transmission between segments. RMT and RMT-
Summ does not alter the internal structure of the model;
therefore, in a plug-and-play manner, RMT-Summ can ef-
fectively integrates with various transformer-based models
and other additional technologies.

To validate the effectiveness of RMT-Summ, we intro-
duce a novel incremental summarisation task shown in
Figure 1: a long text is inputted per segment; the model
must output summarisations of the current segment along
with all the past segments so far. Notably, this summari-
sation task deviates from just summation or cumulation
of segmented summaries because it should occasionally
modify (edit) the past summary, where the model must
memorise the past segments.

Based on this definition, we created a sub dataset from
the PubMed that contains structured abstracts for experi-
ments. The experimental results showed a substantial en-
hancement in the performance of the RMT-Summ powered
BART compared to the baseline original BART.

2 Related Work
The most straightforward approach to address the long-

text summarisation is by directly truncating the input text,
often achieved by directly extracting the initial segment up
to the maximum input length of the PLMs. However, this
method is significantly impacted by lead bias [3].

To minimize the information loss, it’s essential to extend
the length constraints of the PLMs while controlling com-
putational resource consumption. Previous research has
primarily attempted breakthroughs from two perspectives:
Effective Attention (Sec. 2.1) and the Divide & Conquer
strategy (Sec. 2.2).

2.1 Effective Attention

A popular method is to replace full-attention mechanism
with fixed-patterns to achieve more effecient model infer-
ence. Longformer [4], as a seminal work, introduced a
hybrid attention mechanism that utilizes a form of local
attention known as slidng window attention. This alter-
ation allowed Longformer to extend its maximum sequence
length up to 16,384 tokens. BigBird [5] introduced ran-
dom attention on top of Longformer, allowing each token

to randomly access several tokens from other positions.
The fusion of BigBird and Pegasus [6] at that time re-

sulted in a significant improvement and achieved the state-
of-the-art (SOTA) performance across long-text summari-
sation datasets. LongT5 [7], upon the local attention, in-
troduced Transient Global Attention, which avoids token
selection or adding extra tokens for global attention. In-
stead, it dynamically constructs global tokens before self-
attention at each step.

However, since these models reconstructed self-
attention, retraining on large-scale corpora is required,
which introduced additional computational overhead. Our
RMT-Summ, as a plug-and-play approach, efficiently lever-
ages pre-trained models and requires only limited compu-
tational resources for fine-tuning.

2.2 Divide & Conquer

Traditional text summarisation tasks often involve gen-
erating a single summary for an entire text. However,
with the increase in text length, such as in scientific papers
datasets [8], long texts are often structured by sections or
chapters.

Multiple prior works attempted to decompose the task
of long text summarisation into a multi-step process.
DANCER [9] is a representative work, which initially di-
vides long text into multiple non-overlapping segments
based on semantic structures. Subsequently, each seg-
ment is individually modeled and processed. Finally, the
generated summaries for each segment are concatenated
together. SUMM𝑁 [10] adopts a similar approach by
initially segmenting documents into multiple sections. It
generates coarse-grained summaries for each segment and
subsequently integrates these coarse-grained summaries to
produce finer-grained summaries.

Unlike prior research, we introduce an extra memory
prefix that pass salient information throught a segment-
level recurrence. This memory prefix efficiently transfers
crucial information between different sections, enhancing
the generation of more precise summaries.

3 Methods

3.1 Recurrent Memory Transformer

Since our proposed method RMT-Summ (Sec. 3.2)
is highly based on the seminal work, Rucurrent Memory

― 2413 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Transformer (RMT) [1, 2], we introduce its foundation first.
Compare to a prior long-text model called Transformer-XL
[11], RMT utilizes a set of global tokens as memory units
instead of directly caching the hidden states of the entire
segment. RMT adopted a decoder-only architecture in
their first work [1]. Due to the unidirectional nature of
the decoder, within RMT, the memory unit is divided into
read and write modules. The read cell in the prefix part
serves as the continuation of memory from the previous
segment, while the write cell acts as the storage for the
memory of the current segment. Specifically, for time step
𝜏 and segment hidden representations 𝐻0

𝜏 , the segment-
level recurrence implementation in RMT is realized by the
following equations:

�̃�0
𝜏 = [𝐻𝑚𝑒𝑚

𝜏 ◦ 𝐻0
𝜏 ◦ 𝐻𝑚𝑒𝑚

𝜏 ]

�̄�𝑁
𝜏 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (�̃�0

𝜏)

[𝐻𝑟𝑒𝑎𝑑
𝜏 ◦ 𝐻0

𝜏 ◦ 𝐻𝑤𝑟𝑖𝑡𝑒
𝜏 ] := �̄�𝑁

𝜏

Here 𝑁 represents the number of transformer layers, while
◦ represente the concatenate operation.

In the model’s embedding layer, the prefix and post-
fix memory cells are concatenated with the input text’s
embeddings. Subsequently, they undergo a vertical pas-
sage through the transformer. During this process, the
write tokens from the postfix progressively retain the mem-
ory of the current segment as the network passes through
to achieve the depth-level propagation. Subsequently, to
achieve segment-level recurrence, the write tokens of the
current segment are passed on to the next segment:

𝐻𝑚𝑒𝑚
𝜏+1 := 𝐻𝑤𝑟𝑖𝑡𝑒

𝜏 , �̃�0
𝜏+1 = [𝐻𝑚𝑒𝑚

𝜏+1 ◦ 𝐻0
𝜏+1 ◦ 𝐻

𝑚𝑒𝑚
𝜏+1 ]

3.2 RMT-Summ

Text summarisation, as a sequence-to-sequence task, is
more suitable for application to a sequence-to-sequence
model rather than encoder-only or decoder-only structures
[12]. In an encoder-decoder architecture, the sentence rep-
resentation is encoded in the encoder and the target sen-
tence is generated in the decoder. Due to the bidirectional
nature of the encoder, a single memory cell can simulta-
neously serve both read and write functions. Based on
the aforementioned concept, we only insert memory pre-
fix into the encoder following the latest work of RMT [2],
to retain the memory of the current segment and circulate
between segments, while we utilize an addtion decoder

for summary generation. Specifically, in the context of an
encoder-decoder architecture, the update of memory and
the propagation of our RMT-Summ occur as follows:

�̃�0
𝜏 = [𝐻𝑚𝑒𝑚

𝜏 ◦ 𝐻0
𝜏]

�̄�𝑁
𝜏 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (�̃�0

𝜏)

[�̄�𝑚𝑒𝑚
𝜏 ◦ 𝐻0

𝜏] := �̄�𝑁
𝜏

𝑇𝜏 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (�̄�𝑁
𝜏 , 𝑇𝜏)

𝐻𝑚𝑒𝑚
𝜏+1 := �̄�𝑚𝑒𝑚

𝜏 , �̃�0
𝜏+1 = [𝐻𝑚𝑒𝑚

𝜏+1 ◦ 𝐻0
𝜏+1]

Notably, in contrast to the traditional summarization
task, our optimization objective is tailored for the incre-
mental summarization task, as elaborated in Section 4.

4 Incremental Summarisation
To align RMT-Summ with summarisation task, in this

work, we propose the concept of incremental summarisa-
tion. Specifically, given an input document 𝐷 comprising
multiple segments 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑁 }, the correspond-
ing summary 𝑦 can also be segmented into multiple parts
𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑁 }. For each input segment 𝑆𝜏 , our train-
ing target should be𝑇𝜏 = 𝑒𝑑𝑖𝑡 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑦1, 𝑦2, ..., 𝑦𝜏)). It is
important to emphasize here that the function edit implies
that in practical scenarios, our summaries may not simply
be a straightforward concatenation of segment summaries
but a reintegration process as shown in Figure 1.

5 Experiment Setup

5.1 Data

PubMed [13] is a large scale long scientific dataset col-
lected from PubMed.com, which encompassing a wealth of
biomedical and life science literature and journals. More-
over, due to the presence of structured abstracts within
certain papers in PubMed, it is well-suited for validating
our incremental summarisation task. We applied specific
preprocessing to this dataset and filtered out a subset, which
we named PubMed-IncreSumm.

Specifically, following the methodology outlined in this
work [14], we extracted the main sections from the body
text and segmented it into four parts based on the section
headings. Additionally, for some literature, the abstract
sections could be explicitly categorized into “Introduc-
tion”, “Methods”, “Results”, and “Conclusion” through
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Section Keyword

Introduction introduction, case, objective, purpose, . . .
Method methods, materials, methodology, . . .
Results result, experiments, observations, . . .
Conclusion conclusion, discussion, summary, concluding, . . .

Table 1 Keywords used to match the corresponding sections.
If a section heading is not found in this keyword list, we disregard
it. Additionally, we performed the same grouping operation for
the abstract sections.

keyword matching, as specified in Table 1. We filtered out
such articles accordingly.

From PubMed’s train, test, and valid sets, we acquired
24,843, 1,399, and 1,431 data entries, respectively as
PubMed-IncreSumm. We employed the NLTK [15] to-
kenizer to conduct text length statistics for all datasets.
The average length of the source text was 2,736.26, while
the final abstracts had an average length of 298.68.

5.2 Model & Implementation settings

We opted to employ BART [16] (i.e. ‘facebook/bart-
base’ available on Hugging Face) as the backbone model
because of its excellent performance in short text sum-
marisation tasks. The sample counts for the training set,
validation set, and test set were 24,843, 1,399, and 1,431,
respectively. We set the learning rate to 5.0 × 10−5, beam
search width to 4, and the maximum text length for each
section’s main text to 512, with a maximum generation
length of 300. We utilized the F1-score of ROUGE-1,
ROUGE-2, and ROUGE-L as evaluation metrics, invoking
the evaluation package provided by HuggingFace. Here,
we computed the results for the generated output of each
segment, rather than solely focusing on the output of the
final segment. We utilized two Quadro RTX 8000 GPUs,
each with 48GiB memory, alongside one Quadro P6000
GPU with 24GiB memory.

6 Results and Discussion
Our experiments primarily aimed to validate the impact

of different sizes of memory prefix in contrast to base-
line results. As shown in Table 2, under the settings of
incremental summarisation, the BART model performs
strongly even without any additional mechanism in the
PubMed-Incremental dataset. This is to some extent re-
liant on BART’s powerful language modeling capabilities.
On the other hand, scientific papers often have substan-

#Tokens for memory Rouge1 Rouge2 RougeL

Baseline BART 49.35 19.38 48.05
20 48.94 18.76 47.66
32 49.44 19.16 48.14
64 49.14 18.79 47.85
100 49.83 19.66 48.52
128 50.04 19.75 48.72
150 50.15 19.91 48.85
200 50.59 20.24 49.31
256 50.25 20.03 48.92

Table 2 ROUGE scores on PubMed-IncreSumm. The number
of tokens represents the length of the memory prefix for RMT–
Summ. We denote the optimal results with bold font and the
second-best results with an underline.

tial overlaps between various sections, which we believe
might contribute to the model’s sustained strong perfor-
mance. Furthermore, we observed that an increase in the
number of memory tokens exhibits a certain positive corre-
lation with the ROUGE scores. The performance reaches
its peak at around 200 tokens, with the ROUGE-1 score
reaching 50.59, surpassing the baseline by 1.24 points.
Subsequently, after further increasing the token count to
256, the rouge scores remained almost unchanged. How-
ever, the number of memory tokens around 200 appears to
be excessive for a practical situation, suggesting room for
improvement of our approach.

7 Conclusions
For long document summarisation, we proposed a vari-

ant of plug-and-play RMT termed RMT-Summ, which in-
corporates memory prefixes into the encoder-decoder ar-
chitecture. To verify the effectiveness of the RMT-Summ,
we introduced a new optimisation objective, incremen-
tal summarisation, and created a dedicated dataset from
PubMed articles, i.e. PubMed-IncreSumm datasets. The
experimental results show that when the token length of
the memory prefix is around 200, the metric of ROUGE
scores outperforms the baseline. Since carefully designing
a task and training dataset could enable models to gener-
ate memory-encoded vectors that are useful for long-text
processing, we will continue exploring our approach by
evaluating it on diverse models and tasks.
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