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Abstract
Middle sentence generation is a technique that, given a

start sentence and an end sentence, outputs a sentence with
middle semantics. We aim to further explore formulas for
middle sentence generation and construct a compositional
policy to combine these formulas into better translation
models. We study particular and general types of formulas:
particular formulas are based on specific words and gen-
eral formulas are based on the IDF score of each individual
word. We use these formulas as corpus augmentation op-
erations and define a policy that automatically constructs
a breadth-first tree which finds the node with the least per-
plexity as the best node. Results show that our policy
provides significant improvements over our baseline.

1 Introduction
The idea of middle sentence generation is based on a

specific analogy [1]:
Start : Middle :: Middle : End

It takes two sentences from the corpus as start sentence
and end sentences and generates a new sentence whose
semantics lies at the semantic midpoint of the two start and
end sentences. If sentences are represented by vectors, the
basic formula for the vector of a middle sentence is thus as
follows:

→
Middlebasic =

1
2
× (

→
Start +

→
End) (1)

Some studies have demonstrated the effectiveness of data
augmentation methods based on the idea of middle sen-
tence generation for natural language processing tasks
[2, 3, 4, 5, 6]. However, they have limitations as they
explore various different formulas by evaluating various
data augmentation results that use these different formulas.

This paper aims to continue the exploration of genera-

tion formulas that use the notion of middle sentence, by
constructing a comprehensive framework that builds upon
several proposed generation formulas.

2 Sentence generation based on the
notion of middle sentence

2.1 Basic and renormalized formulas

New sentences can be generated directly as middle sen-
tences. This has been explored in works like [4]. The main
drawback is that the middle vector might not be a vector
that actually fits a sentence vector. The consequence is that,
when decoding from the vector, the generated sentence suf-
fers problems: repeated words, sentences somehow falling
short off, inconsistent semantics.

So as to remedy to this problem and release the constraint
on the middle vector, more freedom can be given to gen-
eration by creating a vector sustained by the start and the
middle sentence, instead of the start and end sentence [6].
This allows the creation of sentences with possibly new
semantics.

→
Endbasic = 2 ×

→
Middle −

→
Start (2)

The previous formulas (1) and (2) do not take into ac-
count the fact that the norms of the generated middle or
end vectors might be too short for being an accurate vector
representation of a sentence. Renormalization is an answer
to this problem. It makes the vectors easier to decode into
reasonable sentences by reducing the non-felicitous influ-
ence of too short norms [4, 5, 6]. The renormalization
formulas are:

→
Middlerenorm =

∥
→

Start∥ + ∥
→

End∥

∥
→

Start +
→

End∥
×

→
Middlebasic (3)
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→
Endrenorm =

2 × ∥
→

Middle∥ − ∥
→

Start∥

∥2 ×
→

Middle −
→

Start∥
×

→
Endbasic (4)

In this paper, we adopt generation of the end sentence.

2.2 Influence of specific words

Taking into account low-frequency words can provide
richer and more acute semantics to the generated vector
representations. For the same reasons, giving some weight
to hapaxes can lead to vectors positively biased towards
rarer formulations. By contrast, inhibiting the influence of
more frequent words can solve the problem of overloading
the generated sentence with grammatical words. For all
the previous reasons, we propose a series of formulas that
leverage the frequency of different words.

2.2.1 Low frequency words
It has been observed that giving more weight to rare

words can enrich the calculated sentence vectors and can
lead to better generated sentences [4]. The low frequency
words in appearing in the two put sentences can be added to
the sentence vector weighted by some factor 𝜆. Although
the original proposal was for middle sentences, we apply it
to end sentences:

→
Endlowfreq =

→
Endrenorm + 𝜆 ×

→
wordlowfreq (5)

2.2.2 Hapaxes
A reinforced view over the previous one that took into

account low frequency words, is to consider the addition of
the average of all hapax embeddings in the start and middle
sentences.

→
Endhapaxes =

1
1 + 𝑛

×
( →
Endbasic + 𝜆 ×

𝑛∑
1

→
wordhapaxes

)
(6)

2.2.3 Stop words
The previous formula for hapaxes added information to

the sentence vector. Similarly, and by opposition, one can
imagine subtracting the average vector of all embeddings
of stop words to reduce their influence on the generated
sentence.

→
Endstopwords =

→
Endrenorm − (𝜆 × 1

𝑛

𝑛∑
1

→
wordstopwords) (7)

2.3 Generalization: taking idf of each word
into account

A generalization of the previous formula can be obn-
tained by taking into account their inverse document fre-
quecy (idf). Here, documents are each individual sentence.
This allows to balance the information of words according
to tehir frequency. The additional part is adapted through
the factor 𝜆.

→
Endall =

→
Endrenorm −

(
𝜆 × 1

𝑛

𝑛∑
1
(idf ×

→
word)

)
(8)

In order to not influence too much by the norm of each
word, this last formula renormalizes words before incorpo-
rating their embedding to the calculated vector.

→
Endall+norm =

→
Endrenorm − ©«𝜆 × 1

𝑛

𝑛∑
1
( idf

∥
→

word∥
×

→
word)ª®¬

(9)

3 Compositional augmentation pol-
icy
Text AutoAugment is a compositional framework whose

core idea is to generate new synthetic text by combin-
ing individual editing operations to form a complete se-
quence [7]. The framework is not only capable of generat-
ing multiple sequence instances at once, but it can also au-
tomatically select the best-performing augmented dataset
among all the ones generated. Text AutoAugment has been
proposed for text classification.

We propose to adopt this compositional framework for
data augmentation for the task of data augmentation in
machine translation. The operations in our framwork will
be the proposed formulas for sentence generation. Our
framework defines a similar policy to Text AutoAugment,
called P, that contains 𝑁 operations O. For each operation
O, we define:

O = ⟨𝑡, 𝜆, 𝜃⟩
where:

1. 𝑡 is the type of generation formula, i.e. the five pro-
posed formulas and the renormalized end sentence
formula.

2. 𝜆 is the weight of the extra term in the formula. Note
that the renormalized end sentence formula can be
seen as the multiplication of 𝜆 with a zero vector.
𝜆 ∈ [0, 1].
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3. 𝜃 represents the threshold for sentence filtration. We
use Euclidean distance to determine whether the bilin-
gual sentences are parallel. 𝜃 ∈ [0.3, 0.6].

Our framework takes a parallel corpus as input, stores
it to the root node of an exploration tree, and trains a
machine translation model without any augmented data
from the original parallel corpus. Subsequently, for each
node, the framework creates 𝑁 daughter nodes according
to the number of operations in the policy P. The corpus
on a daughter node is obtained by data augmentation using
the corresponding operation O.

At a tree depth of 1, the node’s model is trained on
the corresponding corpus while at depths greater than 1,
the node’s model is fine-tuned on the parent node’s model
using its own corpus. When the child node’s perplexity is
less than the parent node’s, the end sentence generation of
daughter nodes stops and this daughter node is discarded.

The framework will finally compare perplexities of all
models on the leaves and select the node with the smallest
perplexity as the best node, with the path from the root
node to that node. This path represents the best operational
solution. The complete framework is illustrated in Figure 1.

Figure 1 Proposal: compositional augmentation framework

4 Experimental setup

4.1 Machine translation engine

We use the OpenNMT-py toolkit [8] to create all the
necessary models. Each model is built using an encoder-
decoder architecture based on the Transformer model [9].

4.2 Data

We use the German and Upper Sorbian language
datasets from the WMT22 website1）for our experiments.
Our model training scheme follows the original division:
60,000 instances for training, 2,000 for validation, and
2,000 for testing. Details of data are shown in Table 1.

Lang. # of sent. Avg. # words/sent. Vocab. size
Sorbian

64,000
12.32± 7.00 75,558

German 13.71± 7.49 55,387
Table 1 Statistics on WMT 2022 German–Upper Sorbian

5 Results

5.1 Analysis of different thresholds

We obtain 120,000 parallel sentence pairs when generat-
ing new sentences according to formulas. We set thresholds
from 0.3 to 0.6 in steps of 0.05 for filtration and conduct
seven series of experiments with the best weight of each
formula. BLEU scores of models trained based on the
augmented corpora generated by each formula at different
thresholds for German to Upper Sorbian translation are
shown in Figure 2.

Overall, the increase in the threshold value has a negative
impact on the model, leading to a decrease in BLEU，but
the threshold does not allow a more refined representation
of the differences in the augmented corpus. Most models
perform worst at a threshold of 0.6 as well as best at a
threshold of 0.4. The best model uses the renormalized
idf-weighted formula with a threshold of 0.4.

Comparing the best results for each formula, all models
trained from formulas perform better than the unaugmented
model and none of the formulas except the formula for av-
eraged hapaxes scores perform lower than the baseline in
BLEU. The renormalized idf-weighted formula, that was
proposed last as a generalization (see Formula (9)), shows
significant improvement in terms of BLEU and chrF2.
Both the IDF-weighted formula and the renormalized IDF-
weighted formula show relatively superior performance in
both directions.

1） EMNLP 2022 seventh conference on machine translation
(WMT22)
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Data aug. (idf-weighted formula)

Data aug. (renormalized idf-weighted formula)

Figure 2 Variation in BLEU scores when using different thresh-
olds (German to Upper Sorbian)

5.2 Compositional augmentation policy

We construct a policy with N=6 operations. Each op-
eration is a separate formula with its optimal weight and
threshold.

We compare the optimal nodes in both directions and
compare with the non augmented model and the baseline
model. Our policy shows significant improvements in all
three metrics. This is shown in Table 2.

Direction Method
# of
add.
sent.

BLEU chrF2 TER

de → hsb
No aug. - 32.8± 1.2 58.3± 0.8 44.5± 1.0
Renorm. 116 33.3± 1.1 59.0± 0.8 43.7± 1.0
Com. policy 1,840 35.0± 1.1 64.9± 0.8 40.9± 0.9

hsb → de
No aug. - 32.5± 1.1 60.2± 0.8 46.7± 1.0
Renorm. 1,303 33.4± 1.1 61.1± 0.8 46.1± 1.0
Com. policy 1,213 33.3± 1.1 63.7± 0.8 41.8± 0.9

Table 2 Comparison of compositional policy with no augmen-
tation model and baseline model

The results in Table 3 show details of our policy in the
direction German to Upper Sorbian. We observe that fine-
tuned nodes at depth 2 all have much lower perplexity than
the first layer of the trained-only model, while no node
arrives at depth 3. The main reason is that the amount of
newly generated data in this low-resource setting is insuf-

ficient.
Depth

Node
No.

Parent
Node No.

Total path (s) Perplex.
Leaf
node

0 0 - - 19.5764 False
1 Avg. Hapax 19.2489 False
2 IDF-weig. 18.8499 False
3 Re. IDF-weig. 18.7726 False
4 Re. LFW 18.5069 False
5 Renorm. 19.2353 False

1

6

0

Re. Stop. 19.2027 False
7 Avg. Hapax + Avg. Hapax 6.4694 True
8 Avg. Hapax + IDF-weig. 6.4013 True
9 Avg. Hapax + Re. IDF-weig. 6.5311 True

10 Avg. Hapax + Re. LFW 6.4530 True
11 Avg. Hapax + Renorm. 6.5018 True
12

1

Avg. Hapax + Re. Stop. 6.4304 True
13 IDF-weig. + IDF-weig. 6.4736 True
14 IDF-weig. + Re. IDF-weig. 6.4891 True
15 IDF-weig. + Re. LFW 6.4090 True
16 IDF-weig. + Renorm. 6.4590 True
17

2

IDF-weig. + Re. Stop 6.3949 True
18 Re. IDF-weig. + Avg. Hapax 6.3812 True
19 Re. IDF-weig. + IDF-weig. 6.4937 True
20 Re. IDF-weig. + Re. IDF-weig. 6.4575 True
21 Re. IDF-weig. + Re. LFW 6.3896 True
22 Re. IDF-weig. + Renorm. 6.3787 True
23

3

Re. IDF-weig. + Re. Stop. 6.4301 True
24 Re. LFW + Avg. Hapax 6.3645 True
25 Re. LFW + IDF-weig. 6.4475 True
26 Re. LFW + Re. IDF-weig. 6.4883 True
27 Re. LFW + Re. LFW 6.4563 True
28 Re. LFW + Renorm. 6.4937 True
29

4

Re. LFW + Re. Stop. 6.4613 True
30 Renorm. + Avg. Hapax 6.3420 True
31 Renorm. + IDF-weig. 6.3985 True
32 Renorm. + Re. IDF-weig. 6.3734 True
33 Renorm. + Re. LFW 6.4433 True
34

5

Renorm. + Re. Stop. 6.3937 True
35 Re. Stop. + IDF-weig. 6.3157 True
36 Re. Stop. + Re. IDF-weig. 6.4081 True
37 Re. Stop. + Re. LFW 6.3522 True
38 Re. Stop. + Renorm. 6.3310 True

2

39

6

Re. Stop. + Re. Stop. 6.3792 True

Table 3 Results of nodes in compositional policy (German to
Upper Sorbian). Node with least perplexity is No. 35, genera-
tion path is formula for renormalized stopwords + idf-weighted
formula.

6 Conclusion and limitations
Our results demonstrated significant improvements with

our model: +1.7 in BLEU, +5.9 in chrF2, and -2.8 reduction
in TER in the German to Upper Sorbian direction. In
the Upper Sorbian to German direction, the improvements
obtained are: +2.6 in chrF2 and -4.3 in TER.

As a limitation, with our policy, the exploration tree is
difficult to generate at higher depths in this low-resource
setting. Also, the cost of constructing a compositional
augmentation tree is high, which leads to the issue of local
optima when determining hyper-parameters.
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A Result analysis under different
thresholds (the other direction)
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Figure 3 Same as Figure 2, but for the other direction (Upper
Sorbian to German)

B Comparison of formulas under
optimal parameters
We give the statistics of the results of models trained

under each formula. Results are shown in Tables 4 and 5.

Formula
Weig.
(𝜆)

Thre.
(𝜃)

# of
added
sent.

BLEU chrF2 TER

- (no aug.) - - - 32.8± 1.2 58.3± 0.8 44.5± 1.0
Renorm. - 0.30 116 33.3± 1.1 59.0± 0.8 43.7± 1.0
Renorm. LFW 0.1 0.40 745 33.6± 1.1 59.2± 0.8 43.8± 1.0
Avg. hapaxes 0.5 0.30 212 33.0± 1.1 58.3± 0.9 45.1± 1.0
Renorm. Stop. 0.4 0.50 1,210 33.3± 1.1 59.0± 0.8 44.2± 0.9
IDF-weig. 0.9 0.40 511 33.9± 1.1 59.2± 0.8 43.7± 0.9
Renorm. IDF-weig. 0.9 0.40 380 34.8± 1.2 60.1± 0.8 43.0± 0.9

Table 4 Statistics of best results for each formula (German to
Upper Sorbian). Scores in bold face are statistically different and
higher than the baseline (no aug.).

C Results for compositional aug-
mentation policy (other direction)
Results of our compositional augmentation policy in the

direction of Upper Sorbian to German are shown in Table 6.

Formula
Weig.
(𝜆)

Thre.
(𝜃)

# of
added
sent.

BLEU chrF2 TER

- (no aug.) - - - 32.5± 1.1 60.2± 0.8 46.7± 1.0
Renorm. - 0.45 1,303 33.4± 1.1 61.1± 0.8 46.1± 1.0
Renorm. LFW 0.2 0.30 147 33.8± 1.1 61.4± 0.8 45.6± 1.1
Avg. hapaxes 0.8 0.40 1,020 33.4± 1.1 60.8± 0.8 46.0± 1.0
Renorm. Stop. 0.9 0.30 22 33.7± 1.1 61.5± 0.8 46.0± 1.1
IDF-weig. 0.3 0.50 2,014 33.4± 1.1 61.0± 0.8 45.8± 1.0
Renorm. IDF-weig. 0.7 0.45 700 33.3± 1.1 61.1± 0.8 46.0± 1.0

Table 5 Same as Table 4, but in the other direction (Upper
Sorbian to German)

Depth
Node
No.

Parent
Node No.

Total path (s) Perplex.
Leaf
node

0 0 - - 18.3405 False
1 Avg. Hapax 18.0810 False
2 IDF-weig. 18.0665 False
3 Re. IDF-weig. 18.1784 False
4 Re. LFW 17.8300 False
5 Renorm. 17.9482 False

1

6

0

Re. Stop. 18.0026 False
7 Avg. Hapax + Avg. Hapax 6.8171 True
8 Avg. Hapax + IDF-weig. 6.8002 True
9 Avg. Hapax + Re. IDF-weig. 6.8540 True

10 Avg. Hapax + Re. LFW 6.7710 True
11 Avg. Hapax + Renorm. 6.8088 True
12

1

Avg. Hapax + Re. Stop. 6.9288 True
13 IDF-weig. + Avg. Hapax 6.8379 True
14 IDF-weig. + IDF-weig. 6.9974 True
15 IDF-weig. + Re. IDF-weig. 6.8574 True
16 IDF-weig. + Re. LFW 6.8816 True
17 IDF-weig. + Renorm. 6.8618 True
18

2

IDF-weig. + Re. Stop 6.8568 True
19 Re. IDF-weig. + Avg. Hapax 6.8425 True
20 Re. IDF-weig. + IDF-weig. 6.9477 True
21 Re. IDF-weig. + Re. IDF-weig. 6.7993 True
22 Re. IDF-weig. + Re. LFW 6.8758 True
23 Re. IDF-weig. + Renorm. 6.9676 True
24

3

Re. IDF-weig. + Re. Stop. 6.8312 True
25 Re. LFW + IDF-weig. 6.8783 True
26 Re. LFW + Re. IDF-weig. 6.8527 True
27

4
Re. LFW + Re. Stop. 6.9639 True

28 5 Renorm. + Renorm. 6.9077 True
29 Re. Stop. + IDF-weig. 6.9482 True
30 Re. Stop. + Re. IDF-weig. 6.8726 True
31 Re. Stop. + Renorm. 6.8335 True

2

32

6

Re. Stop. + Re. Stop. 6.9362 True

Table 6 Results of nodes in compositional policy (Upper Sor-
bian to German). Node with least perplexity is No. 10, generation
path is formula for averaged hapaxes + renormalized LFW for-
mula.
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