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Abstract
In-Context Learning (ICL), where language models

learn tasks in a generative form from few-shot demonstra-
tions without parameter update, is emerging while scaling
up the language models. Nevertheless, the performance of
ICL is still unsatisfactory. Some previous studies suggested
that it is due to under-calibration and they fine-tuned lan-
guage models for better ICL performance with enormous
datasets and computing costs. In this paper, we propose
NoisyICL, simply perturbing the model parameters by ran-
dom noises to strive for a calibration. Our experiments
on 2 models and 7 downstream task datasets show that
NoisyICL helps perform ICL better. Our further analysis
indicates that NoisyICL can enable the model to provide
more fair predictions, with less unfaithful confidence. So,
NoisyICL can be considered as an effective calibration.

1 Introduction
Scaling up language models is beneficial for many emer-

gent abilities [1]. Among them, one of the most notice-
able ones is In-Context Learning (ICL), in which language
models can learn tasks in a generative form from few-shot
input-label demonstrations in natural language without ex-
plicit parameter updates. Therefore, ICL has been a highly
promising application of language models [2].

Nevertheless, the performance of ICL is still below the
pre-training and fine-tuning models [3]. Therefore, there
has been some effort in fine-tuning or calibrating language
models towards ICL tasks [4, 5, 6]. These works focus on
remedying the difference between the pre-training knowl-
edge and the ICL task, and produce significant improve-
ments in the ICL performance, while the computation cost
is quite high to fine-tune these enormous language models
on the additional data.

We believe that adding noise to model parameters, which
is beneficial in the pre-training and fine-tuning paradigm
[7, 8], can be a bridge from the pre-training to ICL. In this
paper, we propose NoisyICL, simply add noise to language
model parameters, and then perform ICL on the modified
models.

Our experiments on 2 models and 7 datasets show that an
appropriate perturbation can significantly improve the per-
formance of the ICL with low computational complexity,
as shown in Fig. 1. Moreover, to verify whether Noisy-
ICL can calibrate language models, we conduct further
analysis and point out that: 1. NoisyICL can neutralize
bias among label tokens introduced by the pre-training and
2. NoisyICL can relent the over- and under-confidence in
the prediction, which is considered harmful to the model
predictions [9, 10, 11].

Our contribution can be summarized as:

• We propose NoisyICL, simply add noise into the lan-
guage models and then perform ICL (§2). Our exper-
iment shows that NoisyICL can obtain a better ICL
performance (§3.3).

• We show that adding noise can be an effective cali-
bration for language models to reduce the pre-training
bias and unfaithful confidence in ICL (§3.4).

2 NoisyICL
Here we introduce the basic form of ICL and our pertur-

bation method named NoisyICL.

In-context Learning. Given a supervised dataset D =

{(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1, . . . , 𝑛, where 𝑥𝑖 is an input, and 𝑦𝑖 ∈ 𝑈

is the corresponding label in the label space 𝑈, for
each query input 𝑥𝑞 to be predicted by the language
model, we sample a demos sequence {(𝑥𝑎 𝑗 , 𝑦𝑎 𝑗 )}, 𝑗 =

1, 2, . . . , 𝑘 , where the 𝑘 is the number of demos, and
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Figure 1 While noise is being added to the model, the ratio of ICL accuracy on the models with NoisyICL to the models without
NoisyICL on downstream tasks will reach peaks. This indicates that an appropriate noise perturbation can improve the accuracy of ICL.

construct a prompt input in natural language form 𝑠 =

𝑓 (𝑥𝑎1 , 𝑦𝑎1 , 𝑥𝑎2 , 𝑦𝑎2 , . . . , 𝑥𝑎𝑘 , 𝑦𝑎𝑘 , 𝑥𝑞) with a pattern 𝑓 .
Then, we input 𝑠 into the language model 𝑃𝜃 (·) with pa-
rameters 𝜃 and get an output token distribution 𝑃𝜃 (𝑠). We
choose the label token 𝑙 with the maximum probability
among the label space as the prediction 𝑦𝑞 , that is:

𝑦𝑞 = argmax
𝑙∈𝑈

𝑃𝜃 (𝑙 |𝑠) (1)

Notice that we only construct prompts to drive the model to
predict labels generatively, without any parameter updates.
Such a paradigm is In-context Learning.

NoisyICL. For every parameter matrix 𝜃𝑖 in the language
model used for ICL, in this paper, we simply do an inter-
polation between the parameter matrix and a noise matrix
sampled from 𝑁 (0, 𝜎2) with intensity 𝜆, that is:

𝜃′𝑖 = (1 − 𝜆)𝜃𝑖 + 𝜆𝑁 (0, 𝜎2) (2)

the 𝜆 and 𝜎 are model and task-wise hyperparameters.
Then we perform the aforementioned ICL on the modified
model. We call this NoisyICL.

3 Experiments and Results
We conduct comprehensive experiments to investigate

the effectiveness of NoisyICL. First, we search for the most
suitable noise intensity for each task and model (§3.2).
Then, we confirm that NoisyICL can improve ICL perfor-
mance (§3.3). Moreover, we demonstrate that NoisyICL
is a kind of model calibration, that is, it can effectively
alleviate the model’s bias and unfaithful confidence (§3.4).

3.1 Experimental Settings

Here we introduce the datasets, models, and other details
of our experiments.

Data. In the experiments, we use 7 downstream task
datasets, whose details are shown in Appendix A. Unlike
the common methods that only use the training sets for
demos and testing sets for queries, we sample the demos
and queries from all the labeled data. In detail, for each
labeled data in the whole dataset, we treat it as the query
and contrast a prompt with the demos sampled from the
whole dataset (except the query).
Models. We use GPT-2 [12] and GPT-J [13]. The model
checkpoints are loaded from huggingface1）.
Hyperparameters. We fix the 𝜎, the standard deviation
of the normal distribution, to 0.02, which is the same as
the initialization of both models. In advance, we search
the value of 𝜆, the intensity of noise, as described in §3.2.
Other details. We default to use 4 demos and a very
simple template for each prompt as shown in Appendix B.
We repeat each experiment 20 times.

3.2 The Intensity of Noise

First, we determine the most suitable noise intensity by
a simple search method for each dataset and model. In
detail, we use various intensities to test the performance
and find the one with the best result as the candidate. Some
examples are shown in Fig. 1, and the full results are in
Appendix C. The selected intensities are shown in Table 1.
These optimal intensities are concentrated in (0, 0.2].

3.3 NoisyICL Can Improve Performance

Then, we test the accuracy and Macro-F1 on the 7 down-
stream task datasets with and without appropriate-noised
NoisyICL. Our experimental results are shown in Table 1.

The results show that NoisyICL has an improvement up

1） huggingface.co/gpt2, and huggingface.co/EleutherAI/

gpt-j-6b
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Table 1 Accuracy and Macro-F1 results (%, 𝑚𝑒𝑎𝑛𝑠𝑡𝑑 , 𝑘 = 4). A better result is in bold. 𝜆: The intensity of noise, Acc.: Accuracy,
MF1: Macro-F1; w/o: Not using NoisyICL, w/: Using NoisyICL; Datasets: PS: poem sentiment, HS: hate speech18, SE’14R:
SemEval 2014-Task 4 Restaurants, SE’14L: SemEval 2014-Task 4 Laptops, RTE: GLUE-RTE, MRPC: GLUE-MRPC, Ethos: ethos.

Dataset PS HS SE’14R SE’14L RTE MRPC Ethos Mean

GPT-J

𝜆 0.2 0.2 0.1 0.1 0.1 0.2 0.04 —-

Acc.
w/o 62.240.26 72.510.46 34.520.47 34.000.37 49.860.87 43.080.45 56.310.75 50.36
w/ 52.136.53 76.129.04 52.287.13 46.572.29 49.590.55 60.863.52 56.351.30 56.27

MF1
w/o 21.180.50 27.110.46 31.020.65 33.020.50 47.390.93 42.960.46 55.990.79 36.95
w/ 22.832.07 24.390.70 46.734.23 46.342.13 48.701.03 47.722.86 56.001.33 41.81

GPT-2

𝜆 0.02 0.1 0.08 0.006 0.1 0.08 0.1 —-

Acc.
w/o 52.800.67 37.620.28 41.600.46 40.250.45 50.300.55 67.300.08 44.490.56 47.76
w/ 52.821.20 65.404.20 47.162.07 41.000.71 50.360.62 58.101.59 50.672.03 52.22

MF1
w/o 24.870.75 17.700.16 36.550.47 38.670.47 49.770.57 41.010.16 34.800.65 34.77
w/ 24.501.51 24.120.63 33.710.30 39.470.77 34.750.62 50.210.49 49.531.40 36.61

to 74% and average around 11% to the ICL performance.
We infer that the pre-training datasets and objectives are
not consistent with the ICL tasks [14], that is, the lan-
guage models are overfitted on pre-training. And Noisy-
ICL, which adds noise into models, can bridge such a gap.

However, such gains vary depending on the dataset. In
some combinations of datasets and models, competitive
results cannot be obtained. We speculate that it is due to
the difficulty of these datasets, where the models cannot
predict these tasks intrinsically, while NoisyICL doesn’t
provide new knowledge for these tasks.

3.4 NoisyICL Is A Calibration

Some previous studies have proposed calibration on
large language models for better ICL performance [4, 5,
6, 15]. These calibrations are mainly aimed at a 1. fairer
output distribution [5, 15], that is, when no valid query
is given, the labels should be assigned with the same like-
lihood. However, in original language models, the output
is unfair due to the pre-training bias. Moreover, some re-
searchers pointed out that 2. unfaithful predictions are
harmful [10, 11], and making the model output with more
faithful confidence is also a form of calibration [10, 16].
Some scholars also try some demonstration selection meth-
ods to obtain outputs with more faithful confidence [9].

In this section, we find that the NoisyICL can also solve
both calibrations above. In detail, the model with Noisy-
ICL can not only produce outputs with less bias but also

Figure 2 The correlation between the normalized entropy 𝐻𝑛

and the noise intensity 𝜆 with no query. When the noise gets
stronger, the 𝐻𝑛 becomes higher, which indicates a fairer output.

with suitable confidence. Therefore, we consider Noisy-
ICL as a kind of calibration with a relatively small time
and space cost.

1. NoisyICL alleviates pre-trained bias. We calculate
the normalized entropy 𝐻𝑛 of the model output distribution
when no valid query is given. In detail, for language model
𝑃𝜃 with a vocabulary size |𝑉 |, we construct a semantic-less
input 𝑥0 (such as a space, or ”Label: ”), and calculate the
𝐻𝑛 as:

𝐻𝑛 =

∑ |𝑉 |
𝑖=1 𝑃𝜃 (𝑖 |𝑥0) ln 𝑃𝜃 (𝑖 |𝑥0)

ln |𝑉 | (3)

The 𝐻𝑛 is higher on a fairer output and 𝐻𝑛 = 1 on a random
output.

We test 𝐻𝑛 for both models with 2 different 𝑥0 and
various noise intensities. The results are shown in Fig. 2.
While the noise is getting stronger, the normalized entropy
is getting larger, which means the model is giving a fairer
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Table 2 The 𝐸𝐶𝐸1 results (↓, %, 𝑚𝑒𝑎𝑛𝑠𝑡𝑑 , 𝑘 = 4).

Dataset
GPT-J GPT-2

w/o w/ w/o w/

PS 15.220.47 12.392.09 7.250.68 6.220.90

HS 14.861.89 8.711.95 37.480.23 11.924.96

SE’14R 31.121.08 15.499.81 17.320.82 15.981.15

SE’14L 35.741.47 14.589.33 14.030.47 13.880.66

RTE 29.491.31 32.242.02 31.830.61 44.831.12

MRPC 29.080.67 17.609.00 20.560.23 21.220.67

Ethos 12.150.99 11.951.05 45.610.39 28.210.86

Mean 23.95 16.14 24.87 20.32

output.

2. NoisyICL promotes faithful confidence. The
Expected Calibration Error (𝐸𝐶𝐸𝑝) [17] is a widely-used
indicator for faithfulness of model confidence:

𝐸𝐶𝐸𝑝 = E(| max(𝑧) − E(1𝑦=argmax
𝑖

𝑧𝑖 ) |𝑝)
1
𝑝 (4)

where the 𝑧 is the predicted probability vector by a classi-
fication model, and the final prediction (argmax

𝑖
𝑧𝑖) can be

obtained with a confidence (max 𝑧), and the true label is 𝑦.
Let the 𝑝 = 1, we use the 𝐸𝐶𝐸1 to investigate the over-

and under-confidence of the ICL output. A lower 𝐸𝐶𝐸1

means more faithful confidence, and better calibration, that
is, the confidence becomes a prediction of accuracy [18].
We test both models with and without the appropriate-
noised NoisyICL for 𝐸𝐶𝐸1 on the 7 datasets, the results
are shown in Table 2.

In most situations, the 𝐸𝐶𝐸1 is lower with NoisyICL
than the unperturbed one, meaning the confidence is more
faithful with NoisyICL. This suggests that NoisyICL can
make the model output with more faithful confidence, that
is, less over-confidence in wrong predictions, and less
under-confidence in correct predictions.

Such results suggest that NoisyICL can be considered as
a kind of calibration.

3.5 NoisyICL Furtherance Correct ICL

Moreover, we find that in some cases, unperturbed ICL
can’t benefit correctly from scaling the number of demos,
while, the NoisyICL can help the model correct this issue,
as shown in Fig. 3. These unperturbed models exhibit
an overfitting-like phenomenon and also low accuracies,
while NoisyICL can relieve it.

Figure 3 The impact of demos quantity on accuracy. NoisyICL
can make the model learn from the demos correctly.

We speculate the reason is the mismatch between the pre-
training knowledge and ICL inputs. This leads to a decrease
in the model’s in-context task learning [19] ability, while
NoisyICL reduces such a gap between pre-training data and
ICL style data, which makes models extract information
from ICL inputs better.

4 Conclusion
In this paper, we propose NoisyICL, simply adds random

noise to the parameters of language models to build a bridge
between the pre-training knowledge and the ICL. We show
that NoisyICL can not only improve the ICL performance
but also calibrate the model for fairer outputs and more
faithful confidence.
Limitations. Unlike the fine-tuning on additional ICL-
style datasets [4, 5, 6], NoisyICL does not provide new
knowledge for the model, so the calibrated model can not
discover tasks that are not potentially included in the pre-
training data [20]. Meanwhile, a simple search for the
noise intensity is not efficient and satisfactory.
Future Works. Besides fixing the limits, future works can
focus on where and how the noise should be introduced. In
Transformer-based models, different layers have different
abilities [21, 22]. So, treating these layers differently may
be an effective improvement of NoisyICL. Noise sampling
methods also should be discussed.

Moreover, adding noise to model parameters can be a
rollback of pre-training [23], so, the search for 𝜆 is the
search for the best pre-training checkpoints. With these
checkpoints, we can determine [24, 25] which data is dis-
advantageous to ICL, to better reveal the essence of ICL.
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A Datasets
The datasets used in this paper are shown in the Table 3

Table 3 Datasets used in this paper.

Dataset Data# Label#

single-sentence classification:
poem sentiment[26] 1101 4
hate speech18[27] 10944 4
Ethos*[28] 980 2

aspect-based sentiment classification:
SemEval 2014-Task 4 Restaurants[29] 4722 3
SemEval 2014-Task 4 Laptops[29] 2951 3

double-sentence classification:
GLUE-RTE[30] 2767 2
GLUE-MRPC[30] 4076 2

*To construct inputs of appropriate length, we remove data

points with lengths exceeding 500 from the Ethos, and the number

of the remaining data is 980.

B Prompt Patterns
In this paper, we use a minimum prompt template. For

each task, we design various templates as shown below.
For single-sentence classification datasets (𝑥, 𝑦), we use:
Input: <x>, Label: <y> \n

...

Input: <x>, Label:

For aspect-based sentiment classification datasets
((𝑥, 𝑎), 𝑦), we use:

Input: <x>, Aspect: <a>, Label: <y> \n

...

Input: <x>, Aspect: <a>, Label:

For double-sentence classification datasets ((𝑥1, 𝑥2), 𝑦).
we use:

Input: <x1>, Text 2: <x2>, Label: <y> \n

...

Input: <x1>, Text 2: <x2>, Label:

C Full Results: 𝜆 - Accuracy
The rest of the results in 3.2 and Fig. 1 are shown in Fig.

4.

Figure 4 The rest of the results in 3.2 and Fig. 1.

― 606 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).


