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概要
Large-scale vision-language models such as CLIP have

shown impressive performance on zero-shot image clas-
sification and image-to-text retrieval. However, such zero-
shot performance of CLIP-basedmodels does not realize in
tasks that require a finer-grained correspondence between
vision and language, such as Visual Question Answering
(VQA). We investigate why this is the case, and report an
interesting phenomenon of CLIP, which we call the Con-
cept Association Bias (CAB), as a potential cause of the
difficulty of applyingCLIP toVQAand similar tasks. CAB
is especially apparent when two concepts are present in the
given image while a text prompt only contains a single con-
cept. In such a case, we find that CLIP tends to treat input
as a bag of concepts and attempts to fill in the other missing
concept crossmodally, leading to an unexpected zero-shot
prediction.

1 Introduction
Recent large-scale vision-languagemodels such as CLIP

[1] and ALIGN [2] have shown remarkable performance
on zero-shot classification and text-image retrieval tasks.
These models are trained via cross-modal contrastive
learning onweb-scale image-text pairs and obtain powerful
multimodal representations. Encouraged by these strong
zero-shot capabilities, several recent papers explored CLIP
for more complicated vision-language tasks. The initial at-
tempt made by [3] reports near chance accuracy for zero-
shot performance of CLIP on VQA-v2 [4], a common vi-
sual question answering benchmark. However, their ap-
proach simply uses “question: [question text] answer: [an-
swer text]” as text input for the text encoder of CLIP,
which makes the prediction harder than it should be. A
subsequent work [5] proposes a better prompt generation
method. They first convert a question into amasked prompt

CLIP: "In this picture, the color of the lemon is purple."

図 1 When we ask CLIP the color of the lemon in the above
image, CLIP answers “purple”. The text prompt we use is “In this
picture, the color of the lemon is [mask]”, where CLIP picks one
from [red, green, yellow, orange, purple].

(e.g. “What’s in the bowl behind the cake” becomes “The
[mask] is in the bowl behind the cake”), and filter im-
possible answers using a language model, which improves
CLIP’s zero-shot performance on VQA-v2.

However, the zero-shot performance of CLIP on VQA-
v2 is still not state-of-the-art, which is achieved by task-
specific models [3]. While investigating what makes CLIP
hard to adapt to VQA, we discover an interesting phe-
nomenon, which we call the Concept Association Bias
(CAB).

To describe this phenomenon, we present a simple im-
age containing a “lemon” and an “eggplant” to CLIP, and
ask what color the lemon is, as shown in Figure 1. Surpris-
ingly, CLIP predicts “purple” with high confidence. When
we instead ask for the color of the eggplant, CLIP answers
“yellow”. To cross-check this phenomenon, we formulate a
binary zero-shot image classification task on the same im-
age where the two labels are “yellow lemon” and “purple
lemon”, and find that CLIP predicts “purple lemon” with
high confidence.

We hypothesize that this phenomenon comes from the
discrepancy between what is described in the image and
text input, where CLIP attempts to fill in the missing con-
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cept. The association between “purple” and “eggplant” is
strong, so when asked to fill in themask in “[mask] lemon”,
predicting “purple” instead of “yellow” makes more sense
for CLIP, because the text description of “purple lemon” is
aligned with the image that contains both a lemon and an
eggplant more faithfully than “yellow lemon”, which only
describes the lemon in the image. In fact, when we ran-
domize the color of the lemon and eggplant (e.g. “red”
for lemon and “green” for eggplant), we find that this bias
disappears, and CLIP picks the color almost randomly be-
tween the two.

Vision-language models such as CLIP are being de-
ployed for increasingly broad range of downstream appli-
cations [6, 7, 8, 9]. However, the concept association bias
suggests caution in such efforts.

2 Related Work
Vulnerability of vision and language models

There are a number of papers that study the robustness of
vision and language models. Some prior work [10] shows
that Transformer trained via Masked Language Modeling
[11] is insensitive to word orders, suggesting that the suc-
cess of BERT largely depends on learning higher-order
word co-occurrence rather than learning syntactic and se-
mantic abstractions. Many benchmarks are proposed to
evaluate robustness of ImageNet models towards various
perturbations including common corruption [12], image
style change [13], and different viewpoints [14]. Our work
differs from these studies that are purely based on language
or vision, because CAB is a cross-modal phenomenon,
which occurs when both image and language data are used.
[15] tests compositional generalization of vision and lan-
guage models. [16] introduced a probing dataset called
Winoground, which evaluates visuo-linguistic composi-
tionality of vision and language models. They evaluate a
diverse range of state-of-the-art vision and language mod-
els, including CLIP, but all of them perform close to or
below random chance. Our work also reveals brittleness of
CLIP through the lens of CAB, which has been overlooked
in the past.

Peculiarities of CLIP In the image generation com-
munity, it has been reported that state-of-the-art models
such as DALL·E 2 [6] struggle with composionality [17].
One of the potential causes of such failure has been at-
tributed to the use of CLIP-based image encoder [6]. In

fact, image generation models that do not use CLIP such as
Imagen and Parti are known to be better at generating im-
ages that require compositional reasoning [18, 19]. How-
ever, few works go into depth to analyze the behavior of
CLIP in zero-shot image classification and visual question
answering. Our analysis based on CAB offers a new per-
spective on the weakness of CLIP-based models for com-
positional reasoning.

3 The Concept Association Bias
The zero-shot image classification of CLIP is remark-

able for images that contain a single concept. However,
when there are multiple concepts in the image but the text
input does not cover all of them, the zero-shot classifica-
tion of CLIP can be significantly biased towards the miss-
ing concept(s). We call this bias the Concept Association
Bias (CAB). We first showcase this bias using color recog-
nition tasks.1）For this analysis, we use the Natural-Color
Dataset (NCD) [20], which is a dataset of vegetables and
fruits with a white background. We take the following ob-
jects: banana, brinjal, broccoli, carrot, cherry, corn, cu-
cumber, lemon, orange, plum, pomegranate, strawberry,
tomato. We then randomly sample two images with differ-
ent vegetable types and place the two objects side-by-side,
resulting in 494 images in total. Examples are shown in
Figure 2.

図 2 Example images from Natural-Color Dataset (NCD) [20],
modified for our color recognition tasks so that each image con-
tains two different objects.

For zero-shot transfer from CLIP to our color recogni-
tion task, we ask for the color of one of the objects in the
image. The labels we use are “red”, “yellow”, “purple”,
“green”, and “orange”, so it is a 5-way color recognition
task. When there is a single object in the image, we use the
following text prompt: “In this picture, the color of the ob-
ject is [mask].” When there are two objects in the image,
we specify one of these objects in the prompt. For exam-

1） For all experiments in themain text, we use the ResNet50-x4 back-
bone for CLIP.
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ple, if there is a lemon and another object in the image,
the prompt takes the following format: “In this picture, the
color of the lemon is [mask].”

CAB gap

  - - - - - - - - - - - - - - - - - - - - -  

図 3 Zero-shot performance of CLIP on color recognition tasks
using NCD [20]. CLIP achieves almost perfect accuracy when
there is a single object in the image, but the accuracy significantly
drops when there are two objects. “Two object*” refer to the case
in which we instead measure the accuracy of predicting the color
of the object Bwhen it is asked for the color of the object A, where
we see 80% zero-shot accuracy. We claim this gap between Two
objects and Two objects* is a result of the Concept Association
Bias (CAB).

The results are shown in Figure 3. We first note that the
zero-shot performance of CLIP on our color recognition
task is almost perfect when there is a single object per im-
age (“Single object” in Figure 3). However, the classifica-
tion performance considerably degrades to below chance
when there are two objects per image (“Two objects” in
Figure 3).

How does this happen? We suggest that CLIP does not
have a mechanism that stores object-centric representation
that correctly binds the object’s name and its attribute. In
another words, CLIP processes its input as a “bag of con-
cepts”.

To inspect this possibility, we look at what kind of mis-
takes CLIP makes when there are two objects A and B. We
find thatmanymistakes are derived from a common source.
That is, when asked for the color of object A, CLIP often
predicts the color of object B in the image. In fact, whenwe
measure the accuracy of predicting the color of the object B
when in reality it is asked to predict the color of the object
A, we see that the zero-shot transfer performance of CLIP
is much higher (“Two objects*” in Figure 3), approaching
the single object accuracy.

To understand this phenomenon, we find it helpful to
consider two variables per object, where each variable rep-
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図 4 The concept binding diagram. Two variables per object
represent the object name and its attribute (e.g. color), respec-
tively. We suggest that the text prompt and the image are repre-
sented as two separate “bags of concepts” in CLIP. When a pair
of object-attribute concepts are naturally associated with each
other, then both concepts can be accounted for by including in
the prompt either of the object or the attribute. When only some
of the concepts in the image are included in the text, this leaves
other concepts in the image unaccounted for.

resents the object’s name in the image and the color at-
tribute of the object, as shown in Figure 4. When the colors
are natural (Figure 4 (a)), both the object “lemon” and its
attribute “yellow” in the image are fully explained by the
word “lemon” in the text prompt, resulting in the concept
of the eggplant remaining. When CLIP performs zero-shot
color recognition, we see that placing the color “purple” in
the prompt can most faithfully explain the remaining con-
cept of the eggplant in the image (Figure 4 (b)).

図 5 Examples from UNCD. Single object (Top) and Two ob-
jects per image (Bottom).

The above explanation suggests that there is a strong as-
sociation between the color “purple” and the object “egg-
plant” in CLIP to the point where “purple” can partially
explain the concept of the eggplant. What if we break this
strong association? Does the gap between Two objects and
Two objects* disappear?
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図 6 Zero-transfer performance of CLIP to color recognition on
UNCD, where we assign non-associated color to each vegetable.
CLIP achieves 80% accuracy when there is a single object in the
image. While the accuracy drops for Two objects, the drop is not
as significant as the NCD case. Furthermore, the gap between
Two objects and Two objects* vanishes, compared to the NCD
case.

To test this, we create a version of NCD, which we
call UNnatural-Color Dataset (UNCD), where we artifi-
cially change the color of each fruit and vegetable to non-
associated color. Examples are shown in Figure 5. We re-
peat the same experiment on UNCD. The results are shown
in Figure 6. We see that the zero-shot performance for a
single object is still high, suggesting that CLIP can pick
up the color attribute even if the color is not strongly as-
sociated with the object itself. However, for the two object
cases, we see that there is almost no difference between
Two objects and Two objects* tasks. In other words, CLIP
predicts the two non-associated colors in the image with
almost equal chance.

Why does the CAB gap disappear when objects are
paired with random attributes in images? This result arises
from a common mechanism that impacts both the Two ob-
jects and Two objects* tasks. To see this, we go back to
our diagram in Figure 4 (c). When the colors are unnatural
(e.g., a lemon in red color and an eggplant in green color),
then the remaining bag of concepts that are yet to be ex-
plained by the text include “red”, “green”, and “eggplant”.
This is because the color “red” is not associated with the
concept of “lemon”, and therefore the word “lemon” in the
text prompt cannot explain the color “red”, unlike the case
that uses natural color. As a result, CLIP can choose ei-
ther “red” or “green” for color recognition. And indeed,
surprisingly, CLIP randomly chooses between the two –
it does not associate the concept of “red“ with the lemon,
even though in the image the lemon unambiguously ap-

pears in red. Likewise, for the Two objects* task (in which
the correct prediction is defined as the color of object B
when asked for object A), CLIP essentially randomly picks
one of the two colors present in the image, despite the fact
that each object has their own very distinct color.

Accuracy

left & right

up & down

upper-left & 
down-right

large & small

0.00 0.25 0.50 0.75 1.00

Two objects Two objects*

Prediction accuracy of different spatial arrangements

図 7 The Concept Association Bias (CAB) remains regardless
of the spatial configurations such as “left & right”, “up & down”,
“upper-left & down-right”, and “large & small”. We use the same
subset of NCD as in Figure 3.

3.1 The spatial arrangement has almost
no effect on CAB

In our earlier experiments on NCD and UNCD, two ob-
jects are positioned side-by-side. To see if CAB is robust to
the positioning of objects, we vary the spatial arrangement
of the two objects in the image. Concretely, we test the
following spatial configurations: left & right, up & down,
and upper-left & down-right. We also vary the size of the
two objects for left & right, which is denoted as “large &
small”. As Figure 7 shows, CAB is not affected by either
spatial arrangements or the object size.

4 Conclusion
Every object has a set of concepts that are roughly asso-

ciatedwith it. For instance, the object “lemon” can be asso-
ciated with “yellow”, “fruit”, and so on. Such concept as-
sociation is automatically learned in vision-language mod-
els such as CLIP, to the point where the word “yellow” can
partially explain the object “lemon” in certain cases. We
establish that the Concept Association Bias (CAB) exists
for CLIP through a series of experiments. CLIP is increas-
ingly popular in both computer vision and natural language
processing. We hope our work raises awareness of the brit-
tleness of CLIP as we develop new models on top of CLIP.
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