
Learning Representations of Natural Language Edits via
Levenshtein Prediction

Edison Marrese-Taylor1,3, Machel Reid2,3, Alfredo Solano3

1AIST, 2Google Research, 3The University of Tokyo
edison.marrese@aist.go.jp　machelreid@google.com

　asolano@weblab.t.u-tokyo.ac.jp

概要
In this paper, we propose a novel approach that employs

token-level Levenshtein operations to learn a continuous
latent space of vector representations to capture the un-
derlying semantic information with regard to the document
editing process. We find that, our proposed method trained
on the adversarial paraphrase dataset, PAWS, outperforms
a strong RoBERTa baseline, retaining the language under-
standing performance of its base model.

1 Introduction
Editing documents has become a pervasive component

of many human activities [1]. This is, to some extent, ex-
plained by the advent of the electronic storage of docu-
ments, which has greatly increased the ease with which we
can edit them.

From source code to text files, specially over an extended
period of time, users often perform edits that reflect a sim-
ilar underlying change. For example, software program-
mers often have to deal with the task of performing repet-
itive code edits to add new features, refactor, and fix bugs
during development. On the other hand, right before a con-
ference deadline technical papers worldwide are finalized
and polished, often involving common fixes for grammar,
clarity, and style [2]. In light of this, it is reasonable to
wonder if it would be possible to automatically extract rules
from these common edits. This has led researchers to re-
cently propose the task of learning distributed representa-
tions of edits [2] using an auto-encoding approach.

Auto-encoding approaches have been used previously in
the context of representation learning initially in the vi-
sual domain, but more recently have been extended to the
natural language and video modalities. These approaches

largely form the foundation of “self-supervised learning“
which enables the learning of representations via objec-
tives which solely require a source datum. An instance
of this relevant to NLP is that of the pre-trained masked
language model, BERT [3], in which a source text is ini-
tially corrupted with a mask token [MASK] and then re-
constructed into the original form with a Transformer en-
coder.

As an alternative to this approach, other works have
instead produced representations of edits in an indirect
manner, by instead focusing directly on edit-centric down-
stream tasks such as edit-based article quality estimation
on Wikipedia [4, 5], English grammatical error correction
(GEC), and machine translation post-editing.

Machine translation post-editing, where humans amend
machine-generated translations to achieve a better final
product [6], has more directly addressed the problem of
modelling different editing agents [7] Finally, edits are also
relevant for GEC, which has attracted recent interest from
the research community with several shared tasks being or-
ganized in the last years [8].

In this paper, differently from existing prior work, we
propose a continued pre-training task, not based on auto-
encoding, which aims directly at learning distributed repre-
sentations of natural language edits. In particular, we look
at using the Levenshtein algorithm as a form of supervision
to encourage a model to learn to convert a given input se-
quence into a desired output sequence, namely an edit. In
particular, we look to answer the question of whether cre-
ating a “neural Levenshtein algorithm“ is conducive to im-
proved downstream performance on edit-based tasks, given
the edit-centricity of the algorithm.

Our results show that our proposed pre-training tech-
nique leads to better performance on the adversarial para-

― 795 ―

言語処理学会 第29回年次大会 発表論文集 (2023年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

phrase dataset PAWS, outperforming a strong baseline
based on RoBERTa [9] while also retaining the language
understanding performance of its base model (RoBERTa).

2 Related Work
[2] was the seminal work in proposing to directly learn

edit representations by means of a task specifically de-
signed for this purpose, based on auto-encoding. While
their ideas were tested on both source code and natural lan-
guage edits, the work of [10] proposed a similar approach
that is specifically tailored at source code. After that, [11]
proposed a variation of this model where a latent variable is
introduced as a means to capture properties of Natural Lan-
guage Edits. Additionally, the authors used the obtained
latent vectors to represent edits and tested on a selection or
edit-centric tasks.

Different from the above, other works have instead pro-
duced representations of edits in an indirect manner, by di-
rectly focusing on specific edit-centric downstream tasks.
For example, [4] proposed obtaining edit representations
that are useful to predict changes in the quality of articles
by tackling this task as an edit-level classification problem.
Similarly, [5] proposed to improve quality assessment of
Wikipedia articles by introducing a model that jointly pre-
dicts the quality of a given Wikipedia edit and generates a
description of it in natural language. Another related task
is machine translation post-editing, where humans amend
machine-generated translations to achieve a better final
product, where recent work has more directly addressed
the problem of modelling different editing agents [7]. Fi-
nally, edits are also relevant for English grammatical error
correction (GEC), which has attracted recent interest from
the research community with several shared tasks being or-
ganized in the last years [8].

3 Proposed Approach
We propose a new pre-training task based on self-

supervision. In particular, we look at using the Levenshtein
algorithm as a means of pushing a model to learn to convert
a given input sequence into a desired output sequence.

The Levenshtein algorithm has been used in previous
work on learning edit-based generative models [12, 13]
thanks to its objective of finding the shortest edit path from
a given source sequence to a target sequence. However,
instead of purposing the algorithm for generation, in this

work we look to see if we can include this objective from
a natural language understanding (NLU) perspective. In
particular, we look to assess whether Transformer encoder
representations can be trained to contain information rele-
vant to an edit, which we hypothesize can be achieved by
directly predicting relevant operations and their associated
tokens — as produced by an oracle Levenshtein algorithm.

Let G− be the original version of an object, and G+ its
form after a change/edit has been applied. We assume
that both G− and G+ are sequences of tokens such that
G− = [G1

− , . . . , G
=
−] and G+ = [G1

+, . . . , G
<
+]. We use a fast

implementation of the Levenshtein algorithm to identify
spans of tokens that have been replaced, inserted or deleted
as a result of the edit, and define token-level edit operation
labels to indicate how each token was changed.

Concretely, we first tokenize the pair (G− , G+), then use
the Levenshtein algorithm to identify the text spans that
have changed, and finally further process this output to
assign token-level labels capturing the transformations re-
quired to convert G− into G+. Let G8: 9− be the sub-span on G−

that goes from positions 8 to 9 , our post-processing works
as follows.

• When a span has been inserted between positions G8: 9− ,
such that it appears in G:: 9

− , we label the tokens in the
latter as INSERTER, and also label token G:−1

− , as
INSERT. We do this to provide the model with con-
text of where the insertion was performed, in terms of
the G− .

• Similarly, if the token G8: 9− has been replaced by the
span G::;

− , we label the tokens on the respective spans
as REPLACE and REPLACER.

• If the span G8: 9− has been removed from the sequence as
a result of the edit, we label each token as DELETE.

• Tokens that have not been directly involved in the edit
are not labeled (we represent this using the empty la-
bel denoted as O).

As a result of our post-processing, each token in both G−

and G+ is mapped to a single Levenshtein operation label:
REPLACE, REPLACER, INSERT or INSERTER, as
shown in Figure 1. The end goal of our proposed pre-
training task is to predict these token-level Levenshtein op-
erations, which, as explained, encode the operations rele-
vant to transform G− into G+.

The input to our model is constructed by first prepending

― 796 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

図 1 Example of model input-output for the edit defined by the sequences “My name is John“ and “ My last name is Wayne“, where
the label O denotes tokens that have not been directly involved in the edit.

[CLS] My name is John [SEP] My last name is Wayne
O INSERT O O REPLACE O O INSERTER O O REPLACER

the [CLS] token to G− and G+, which are separated using the
[SEP] token, whose total length we denote as ; = <+=+2.
This input is embedded and then fed to an L-layer Trans-
former encoder, which can be initialized with a pre-trained
model, that returns a sequence of hidden representations
h0, . . . h; . We add a classification head (a simple linear
classifier) and require the model to predict the correspond-
ing label for each token, ignoring tokens that have not been
directly involved in the edit (label O), using a cross entropy
loss (L!4E).

We also consider an additional mechanism to enrich the
quality of the learned representations, which is based on
techniques that have proven useful in previous work [11].
Concretely, we note that the vector associated to the [CLS]
token (h0) is frequently used to represent the complete
model input when using Transformer models such as ours.
Since there is no specific token-level Levenshtein label as-
sociated to this token, we propose to encourage its repre-
sentation to contain information about the overall edit. We
do this by requiring our model to predict the set of tokens
that have been changed in the edit in an unordered fashion,
using a separate model head (again, simple linear projec-
tion) which receives this representation as input.

5 = MLP(h0) ∈ ℝ |V | (1)

As shown in Equation 1 above, we use this additional head
to project h0, the hidden representation for the [CLS] to-
ken, to |V |, the vocabulary size. We then let our model min-
imize the loss function defined in Equation 2, where GΔ is
the set of tokens that has been changed (inserted, replaced
or removed). Finally, the total loss used to train our model
is the simple summation of the above introduced losses,
L = L!4E +LGΔ .

LGΔ := log ?(GΔ |h0) = log
|GΔ |∏
C=1

exp(5GC)∑+
9 exp(5 9)

(2)

4 Experimental Setup
Pre-training Datasets To pre-train our model, we

utilize large available corpora containing natural language
edits in a variety of topics and domains. We specifically
rely on two datasets of edits extracted from Wikipedia,

WikiAtomicEdits [14] and WikiEditsMix [11]. As shown
in Table 1, we specifically work with two sub-portions of
the WikiAtomicEdits, WikiInsertions and WikiDele-
tions, which respectively contain examples where only
additions or deletions are present. These two portions
are concatenated and used as a whole. Since pre-training
is computationally very expensive, we first use WikiEd-
itsMix, which is much smaller, as a test-bed for ablation
experiments regarding the GΔ loss.

表 1 Details of the data utilized for pre-training.

Dataset Num. Edits Avg. Len

WikiInsertions [14] 13.7M 24.5
WikiDeletions [14] 9.3M 25.1
WikiEditsMix [11] 114K 61.6

Downstream Tasks Our pre-training approach aims
at generating a generic edit encoder that is useful in a broad
variety of situations involving edits. To that end, we select
specific datasets to probe the ability of the model to solve
edit-related tasks, and also to make sure that our training
procedure does not lead to catastrophic forgetting, making
the model lose the utility of the representations acquired
during the original masked language model’s pre-training.
For the former, we propose to use PAWS [15], an adver-
sarial dataset for paraphrasing detection, which is strongly
correlated to edits, as paraphrases are defined as sentences
that are semantically similar to each other. We test both
fine-tuning and zero-shot abilities on this model. For the
latter, we look at the widely-used GLUE benchmark [16]
and select the MNLI dataset to test that language entail-
ment capabilities remain.

Evaluation For evaluation of our pre-training phase,
we utilize the per-token classification F1-Score, and also
compute the overall F1-Score. Regarding the downstream
tasks, we use accuracy, which is the de facto metric for both
MNLI and PAWS.

Implementation Details Our model is initialized
with RoBERTa [9], which we adopt as our baselines for
all of our downstream experiments. We use fairseq [17] to
implement our model and perform distributed pre-training

― 797 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

表 2 Performance of our model on our pre-training Levenshtein Prediction task.

Model Dataset Performance (F1-score)
All INSERT INSERTER REPLACE REPLACER DELETE

Full WikiEditsMix 91.2 87.8 95.6 89.9 88.7 93.5
No GΔ WikiEditsMix 91.8 89.4 96.1 90.6 88.6 93.7

Full WikiInsertions 79.8 99.9 100 99.8 99.4 -

using 16 NVIDIA V100-16G GPUs, and fine-tuning with a
single GPU. We access these by means of nodes on a large
cluster, where each node has four GPUs. We use the Adam
optimizer with a learning rate of 1e-4 for pre-training, and
1e-3 for fine-tuning on the downstream tasks.

5 Experiments and Results
As can be seen in Table 2, all of our models attain an ex-

cellent performance on the pre-training task, with an over-
all F1-Score of more than 90% across edit labels. We be-
lieve this shows our the encoder is capable of successfully
predicting the relevant operations generated by our ora-
cle Levenshtein editor, suggesting that the learned repre-
sentations may indeed contain information relevant to the
changes that are introduced.

Regarding the impact of our proposed GΔ loss during
pre-training, as seen on our ablation results performance in
Table 2, we see that GΔ as a positive impact on the overall
performance of the model in the WikiEditsMix dataset in-
creasing the F1-Score my more than 0.5 points. This result
is consistent with previous work, validating the contribu-
tion of this loss applied to our setting. In light of this find-
ing, our final model includes both of our proposed losses
and is pre-trained on WikiInsertions.

Table 3 summarizes our results on the downstream tasks.
As can be seen, when fine-tuned, our model is able to
outperform our strong RoBERTa baseline in the adversar-
ial paraphrase dataset, PAWS, suggesting that the repre-
sentations induced by our Levenshtein prediction loss in-
deed help the model learn relevant information about ed-
its. Moreover, we also observe that the model is able to
attain such increased performance while still retaining the
language understanding capabilities of its base model, as
suggested by the performance on the MNLP dataset, which
remains constant.

表 3 Performance of our model and baseline based on
RoBERTa on our selected fine-tuning tasks, where ZS stands for
Zero Shot.

Dataset Model Accuracy

MNLI
RoBERTa 87.6

EARL 87.6

PAWS
RoBERTa 90.6

EARL 94.7

PAWS ZS
RoBERTa 55.8

EARL 44.2

6 Conclusions and Future Work
This paper proposes a novel approach for training a

general-purpose edit representation model, which is not
based on auto-encoding. Concretely, we propose a pre-
dictive task based on token-level Levenshtein operations
where the token-level labels encode the set of operations
necessary to transform a given input sentence into an out-
put sentence.

We find that a model initialized with RoBERTa and
trained with our proposed loss, is able to outperform the
baseline on the task of adversarial paraphrasing detection
on PAWS, while retaining the language understanding per-
formance of its base model. We think this evidence sup-
ports the idea that creating a neural model that implements
the Levenshtein algorithm is conducive to improved down-
stream performance on edit-based tasks, suggesting a po-
tential new path for the future of pre-training. For future
work, we are interested in further testing our pre-trained
model on more downstream tasks relevant to edits, and in
combining our proposed loss with the masked language
modelling task for more efficient and effective training.

― 798 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Acknowlegments
Computational resource of AI Bridging Cloud Infras-

tructure (ABCI) provided by National Institute of Ad-
vanced Industrial Science and Technology (AIST) was
used for the experiments in this paper.

参考文献
[1] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Ar-

jun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Ab-
hishek Udupa. On the fly synthesis of edit suggestions.
Proceedings of the ACM on Programming Lan-
guages, Vol. 3, No. OOPSLA, pp. 143:1–143:29, October
2019.

[2] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis,
Marc Brockschmidt, and Alexander L. Gaunt. Learning
to Represent Edits. In Proceedings of the 7th Inter-
national Conference on Learning Representations,
2019.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics.

[4] Soumya Sarkar, Bhanu Prakash Reddy, Sandipan Sikdar,
and Animesh Mukherjee. StRE: Self Attentive Edit Qual-
ity Prediction in Wikipedia. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pp. 3962–3972, Florence, Italy, July
2019. Association for Computational Linguistics.

[5] Edison Marrese-Taylor, Pablo Loyola, and Yutaka Matsuo.
An Edit-centric Approach for Wikipedia Article Quality
Assessment. In Proceedings of the 5th Workshop
on Noisy User-generated Text (W-NUT 2019), pp.
381–386, Hong Kong, China, November 2019. Associa-
tion for Computational Linguistics.

[6] L. Specia, K. Harris, A. Burchardt, M. Turchi, M. Negri,
and I. Skadina. Translation Quality and Productivity: A
Study on Rich Morphology Languages. pp. 55–71, 2017.

[7] António Góis and André F. T. Martins. Translator2Vec:
Understanding and Representing Human Post-Editors. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pp. 43–54, Dublin, Ireland,
August 2019. European Association for Machine Transla-
tion.

[8] Christopher Bryant, Mariano Felice, Øistein E. Andersen,
and Ted Briscoe. The BEA-2019 Shared Task on Gram-
matical Error Correction. In Proceedings of the Four-
teenth Workshop on Innovative Use of NLP for
Building Educational Applications, pp. 52–75, Flo-
rence, Italy, August 2019. Association for Computational
Linguistics.

[9] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. RoBERTa: A Robustly Op-
timized BERT Pretraining Approach. arXiv:1907.11692
[cs], July 2019.

[10] Rui Zhao, David Bieber, Kevin Swersky, and Daniel Tar-
low. Neural Networks for Modeling Source Code Edits.
In Proceedings of the 7th International Conference
on Learning Representations, 2019.

[11] Edison Marrese-Taylor, Machel Reid, and Yutaka Matsuo.
Variational Inference for Learning Representations of Nat-
ural Language Edits. Proceedings of the AAAI Con-
ference on Artificial Intelligence, Vol. 35, No. 15, pp.
13552–13560, May 2021.

[12] Machel Reid and Victor Zhong. LEWIS: Levenshtein
Editing for Unsupervised Text Style Transfer. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pp. 3932–3944, Online, Au-
gust 2021. Association for Computational Linguistics.

[13] Nabil Hossain, Marjan Ghazvininejad, and Luke Zettle-
moyer. Simple and Effective Retrieve-Edit-Rerank Text
Generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pp. 2532–2538, Online, July 2020. Association for
Computational Linguistics.

[14] Manaal Faruqui, Ellie Pavlick, Ian Tenney, and Dipan-
jan Das. WikiAtomicEdits: A multilingual corpus of
Wikipedia edits for modeling language and discourse. In
Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pp.
305–315, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics.

[15] Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge.
PAWS-X: A cross-lingual adversarial dataset for para-
phrase identification. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pp. 3687–3692, Hong Kong, China, November
2019. Association for Computational Linguistics.

[16] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel Bowman. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language
Understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pp. 353–355, Brussels,
Belgium, November 2018. Association for Computational
Linguistics.

[17] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael Auli.
Fairseq: A Fast, Extensible Toolkit for Sequence Mod-
eling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association
for Computational Linguistics (Demonstrations),
pp. 48–53, Minneapolis, Minnesota, June 2019. Associ-
ation for Computational Linguistics.

― 799 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

