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Abstract

Using large pre-trained language models (PLM), such as
BERT, to tackle natural language processing downstream
tasks has become a common practice, where it is often
necessary to fine-tune the PLM to achieve the best re-
sults. However, these PLMs require large training data
to fine-tune the desired task properly. To solve this prob-
lem, we propose using subspace-based methods to explore
the geometrical structure of embeddings extracted from a
PLM, effectively performing text classification when lim-
ited training data is available. Our results on the IMDB
and Movie Review datasets show that using the appropri-
ate subspace-based method with pre-trained BERT embed-
dings can outperform fine-tuned BERT when limited train-
ing data is available. While our results are limited to sen-
timent analysis, they showcase a less data-hungry strategy

that could be applied in other limited resource contexts.

1 Introduction

With the development of the transformer architec-
ture [1], it has become a common practice to use pre-
trained large language models (PLM), such as BERT [2]
and GPT3 [3], to tackle downstream tasks in natural lan-
guage processing.

While there are strategies to use these PLMs without
further training, through prompting, and/or training in a
parameter-efficient manner by using adapters, fine-tuning
these models for the desired task by adding a simple head
to the language model is still a standard strategy.

Fine-tuning language models have been shown to lead
state-of-the-art results in several downstream tasks in NLP,

but struggle to deliver good performance when there is lim-
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ited training data. Nevertheless, fine-tuning can be tricky
as results can highly vary depending on the choice of ran-
dom seed for hyper-parameter initialization and training
data order [4].

In light of this issue, in this paper, we offer a simple al-
ternative to PLM fine-tuning, based on the subspace repre-
sentation, and demonstrate its effectiveness when there is
limited training data in the task of text classification.

Such representation comes from computer vision, based
on the empirical evidence that patterns of the same entity
(e.g., pictures of the same person) tend to cluster in high-
dimensional space [5, 6]. Moreover, it has been shown
to hold also for traditional word embeddings of texts, be-
ing extensively explored in several NLP downstream tasks,
such as word compositionality [7], word polysemy [8], text
summarization [9], and text classification [10].

In this setting, each text input is represented as a set of
embeddings, which are modeled as low-dimensional linear
subspaces in a high-dimensional embedding space. When
modeled using the principal components analysis (PCA),
the subspace compactly represents the distribution of the
features in a set based on the directions of the highest vari-
ance. This subspace discards irrelevant information, such
as noise, while effectively representing variations, making
it a powerful tool when there is limited training data.

We extend these studies to showcase the capabilities of
the subspace representation when limited training data is
available to fine-tune a PLM. We specifically target the task
of sentiment analysis, performing tests on the Movie Re-
view and IMDB datasets. We chose these two datasets
as they contain samples from the same domain but sig-
nificantly differ in size. We compared the subspace-based

methods’ performance to a standard classifier built on top
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Figure 1: Process of modeling a text as a subspace. Words

Word subspace YV

from the text are extracted and then translated to word vec-
tors by using a word embedding model. Then, the set of

word vectors is modeled as a word subspace by using PCA

of BERT, and our results show that the subspace-based
methods using pre-trained BERT embeddings can outper-

form fine-tuned BERT in a low training data regime.
2 Subspace theory overview

In this section, we lay down the foundations of subspace
representation and how it is applied to textual data. Then,
we discuss the main subspace-based methods used to tackle
the text classification task.

2.1 Subspace representation for texts

In this formulation, each text is represented by a set of
n embedding vectors organized as the columns in an em-
bedding matrix X € RP*", where p is the size of the em-
bedding vectors. This set of vectors is then modeled as
a set of basis vectors spanning a linear subspace. To ob-
tain a consistent subspace representation that can be ap-
plied to sets of different numbers of embedding vectors,
we apply the principal components analysis (PCA) with-
out data-centering.

This representation retains most of the variability of
the original embeddings in the set [11, 12], and, conse-
quently, can effectively and compactly represent the con-
text of the corresponding text. Each direction given by the
basis vectors of this subspace represents the directions with
the highest variance of the text embeddings and can be re-
garded as the main semantic meanings [9].

Figure 1 shows our approach to model a subspace from
a text. To model the word subspace for this set of embed-
dings, we first need to compute the following autocorrela-
tion matrix, R = XX . The orthonormal basis vectors of
the m-dimensional subspace ) are obtained as the eigen-
vectors with the m largest eigenvalues {4;}]", of the ma-
trix R. The subspace ) is then represented by the matrix
Y € RP*™ which has the corresponding orthonormal ba-

sis vectors as its column vectors.
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For details on choosing the subspace dimension m, we
refer the readers to the Appendix A. In addition, we will
refer to the subspaces by their basis vectors’ matrices for
simplicity.

2.2 Subspace-based methods for text
classification

This section discusses the main subspace-based methods
used for text classification, specifically for sentiment anal-
ysis. We formulate our problem as a single-label classifi-
cation problem. Given a set of training texts and their re-
spective labels denoted as {(X;, l,-)};.il, where X; € RP*"
are the text’s embeddings, [; € (1,2) is its class label, and
d is the number of texts in the dataset; we wish to classify
an input text X;, into one of the classes. In the case of sen-
timent analysis, we consider only two different classes, i.e.,

positive and negative sentiment.

221 MSM

The application of mutual subspace method (MSM) [13]
to text classification comes from the observation that a sub-
space spanned by important words representing a class,
i.e., class subspace, can also be derived from a single text
or a combination of all texts in the class. Furthermore, a
subspace modeled from a text, i.e., text subspace, that also
belongs to this class should be almost the same as the class
subspace [10].

Given an input text subspace Y;;, € RP*™in and the c-th
class subspace Y. € RP*™i we measure their similarity
based on their canonical angles [14], computed using the
singular value decomposition (SVD) [15].

We first calculate the SVD, Y] ¥, = ULV, where X =
diag(k1, ..., Kkmy,),> {&j };.":"'1' represents the set of singular
values, and (k| > ... > Ky,,). The similarity can then be
calculated as S (¢) = % Z;Zl K?, where 1 <t < m;,,, and
is equivalent to taking the average of the squared cosine of
t canonical angles. Finally, the input text is assigned to the
class with the highest similarity.

2.2.2 GSM

The Grassmann Subspace Method (GSM) increases the
abstraction level by representing each text subspace Y as a
point y on the Grassmann manifold, where each sentiment
class can then be modeled by the distribution of the sub-
spaces it contains. Classification is performed by compar-
ing a set of reference points on the Grassmann manifold,
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Figure 2: Subspace representation on a Grassmann mani-
fold

modeled as a subspace S, with an input point y;;,.

The Grassmann manifold G (m, p) is defined as a set of
m-dimensional linear subspaces of R” [16]. This manifold
can be embedded in a reproducing kernel Hilbert space by
using a Grassmann kernel [17]. In this work, we use the
projection kernel, k,(Y1,Y>) = % Z’}”‘zl cos? 6;, which is
homologous to the subspace similarity.

Then, a text subspace Y can be represented as a point on
the Grassmann manifold with regards to a reference sub-

space dictionary {Yq}g’:1 as:

y = kP(Y9 Yq)

1
= [kp(Y, Y1), kp(Y,Y2), ... kp(Y,¥Yn)] € RN M

Figure 2 shows a conceptual diagram of the subspace
representation on a Grassmann manifold. Consider the set
of training subspaces T = {(Y;, l,v)}f':1 corresponding to
the texts in the training set. We obtain a set of points
{(y,1 1-)]»l.d:1 corresponding to each training text subspace by
using equation 1 with respect to 7. Through the kernel trick
using the projection kernel, we now have a set of points on
the Grassmann manifold corresponding to each sentiment
class. GSM models the sentiment class subspaces S based
on the set of points corresponding to each class.

We measure the similarity between a sentiment class
subspace S, and an input point y;, by S = yTP.y,
where P. = S.S/ is the projection matrix onto the sub-
space Se.

Although this method is not suitable for tasks with a
large number of training samples, due to the kernel ma-
trix calculation, it is very effective to generalize the local
distribution of subspaces on the Grassmann manifold when

there is limited training data.
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2.2.3 GOSM™M

Word embeddings extracted from models trained based
on the co-occurrence of words do not necessarily carry sen-
timent information, i.e., opposite sentiment words might
have very close embedding representations because they
often occur in the same context. Based on this observa-
tion, previous work [10] has shown that using discrimina-
tive versions of the subspace-based methods, such as the
Grassmann Orthogonal Subspace Method (GOSM), to be
effective in solving sentiment analysis.

GOSM applies the whitening process to the sentiment
class subspaces S, on the Grassmann manifold, maximiz-
ing the distance between them, and alleviating the lack of
sentiment information, i.e., it increases the distance be-
tween opposite sentiment word embeddings.

First, we need to calculate the whitening matrix 0. We

define their projection matrices as P. = S.S_], and then
IC|

calculate the total projection matrix, G = } _,

P, where
|C| is the number of classes.

The whitening matrix O can be obtained based on the
eigenvalues and eigenvectors of the matrix G € RV*? as
0 =A"2E7, where v = |C| x m, A € R" is the diag-
onal matrix with the j-th highest eigenvalue of the matrix
G as the j-th diagonal component, and E € RP*V is a
matrix whose j-th column vector is the eigenvector of G
corresponding to the j-th highest eigenvalue.

Classification under this framework is very similar to
GSM; however, we compute a whitening transformation
matrix during the training stage. In the classification stage,
we first apply this whitening transformation to all reference
subspaces S. and input point y;, following:

§7=0S.,

) @)
yin = Oyin'

Then, classification follows as described in GSM.
3 Experiments and Results

In this section, we describe the experiments performed
to assess the effectiveness of the discussed subspace-based
methods in low training data regimes and compare them
against a transformer-based language model using full fine-
tuning. More specifically, we compare against BERT [2],
using the HuggingFace library [18] implementation and
the “bert-base-uncased” pre-trained model.

In our experiments, we used two different datasets:

This work is licensed by the author(s) under CC BY 4.0
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« Movie review (MR) dataset v2.0", proposed
by [19], containing 2000 reviews extracted from the
IMDB website, with 1000 positive sentiment review,
and 1000 negative sentiment reviews.

« IMDB dataset?’, proposed by [20], containing 50000
reviews also extracted from the IMDB website, where
half of the reviews express positive sentiment, and

half express negative sentiment.

We specifically chose these two datasets because they
contain samples from the same domain but significantly
differ in size. For both datasets, we used the standard train-
test sets.

Classification using subspaces followed the methods ex-
plained in Section 2.2. When using BERT, we added a clas-
sification head that consists of a linear layer on top of the
pooled output. We will refer to this method as “standard”
as this is one of the standard ways to perform classification
when using BERT?.

While there are several ways to extract embeddings from
BERT, in our experiments, we considered the following:
Given a text ¢ with n tokens® , we extracted n embeddings.
For each token, we considered the sum of the token’s rep-
resentation taken from the last four layers in BERT. There-
fore, each text can be represented as a matrix X € RP*",
where p is the size of BERT’s hidden layers (i.e., 768).

We first compared their performances on the larger
IMDB dataset. Due to this dataset’s size, we did not test
the Grassmann variations of the subspace-based methods.

Results are shown in Table 1. When using the pre-
trained BERT, we can see that although the standard classi-
fier can perform relatively well, MSM could outperform it.
However, once we fine-tune BERT, the standard classifier
achieves the best performance, although the difference with
MSM is smaller than with pre-trained BERT. These results
indicate that the subspace-based methods can be helpful
when fine-tuning is not feasible.

We then assessed their performance in the smaller MR
dataset. Results are shown in Table 2. We can see that with-
out fine-tuning, the standard classifier performs poorly. On
the other hand, MSM shows a performance consistent with

the IMDB dataset. Furthermore, we can see results further

1)  http://www.cs.cornell.edu/people/pabo/movie-review-data/

2)  https://ai.stanford.edu/ amaas/data/sentiment/

3) This architecture follows the BertForSequenceClassification im-
plementation of the Huggingface Transformer library.

4)  According to BERT’s tokenizer, including the CLS token.
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Table 1: Results on the IMDB dataset, comparing the
MSM with standard classifier when using pre-trained
BERT and fine-tuned BERT on the IMDB training set

Fine-tuning Classifier Acc. Rec. Prec. fl
standard  71.71 84.61 67.25 74.94
None
MSM 77.46 73.25 80.53 76.72
standard  92.60 92.23 92.93 92.58
IMDB
MSM 92.00 90.65 93.38 91.99

Table 2: Results on the Movie Review dataset, compar-
ing the subspace-based methods with the standard classi-
fier when using pre-trained BERT and fine-tuned BERT on
the MR and IMDB training set

Fine-tuning Classifier Acc. Rec. Prec. fl
standard  55.53 83.37 53.80 65.04
MSM 77.44 7487 79.01 76.88
None
GSM 86.24 86.24 86.39 86.31
GOSM 91.14 91.14 91.20 91.17
MR standard  85.64 89.58 83.63 86.27
IMDB standard  88.14 90.89 86.25 88.44

improve with GSM and GOSM.

In addition, we can observe that when we fine-tune
BERT on the MR dataset, the standard classifier’s per-
formance significantly improves; However, we can see it
achieves about the same performance as GSM with pre-
trained BERT embeddings. Fine-tuning BERT on IMDB
helps improve its performance on the MR dataset, but it is

still far below the performance it achieved for IMDB.

4 Conclusions

We presented a subspace-based alternative for fine-
tuning large transformer language models when there is
limited training data for text classification. When modeled
using PCA, the subspace representation can compactly rep-
resent the distribution of the features in a set, making it
a powerful tool in low training data regimes. Our results
on the IMDB and Movie Review datasets show that using
the appropriate subspace-based method with pre-trained
BERT embeddings can outperform fine-tuned BERT when
limited training data is available. Although limited, our re-
sults show that subspace-based methods can offer an effec-

tive alternative for fine-tuning in text classification.
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A Subspace dimension

In general, the dimension m of each subspace is empir-
ically determined. For sentences, about four dimensions
should suffice to retain most of the sentence embeddings’
variance [11]. However, for texts or sets of texts, more di-
mensions will likely be necessary. The amount of variance
retained by the basis vectors of the subspace can be de-
termined by using the cumulative contribution rate u(m).
Considering that we want to keep a minimum of y,,;,, of
the text variance, we can determine m by ensuring that

u(m)q = fmin, Where:

_ Z;Z] (A1)

— . 3
7 () ©)

u(m)g
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