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Abstract
Peer review aspect score prediction (PASP) is a valu-

able tool for improving the efficiency and effectiveness
of academic peer review processes. However, the limited
availability of labeled peer review data can pose a challenge
for traditional supervised learning approaches. In this pa-
per, we present a novel semi-supervised learning (SSL)
method for PASP that leverages contextual features from
unlabeled data to improve performance. Our approach in-
corporates the Long-Short Transformer (Transformer-LS),
a transformer for long sequences with linear complexity,
into the Γ-model, a variant of the Ladder network that
utilizes a denoising autoencoder to reconstruct the input
data from a corrupted version. By minimizing the recon-
struction error of the auxiliary unlabeled data, it can help
in training the classifier. We empirically demonstrate the
superior performance of our system compared to the su-
pervised and naive semi-supervised learning baselines on
the PeerRead benchmark.

1 Introduction
The increasing number of submissions to AI-related in-

ternational conferences and journals has made the review
process more challenging. Automatic peer-review aspect
score prediction (PASP) is a valuable tool for improving
the efficiency and effectiveness of the review process by
providing reviewers and authors with a numeric score for
different qualities of a paper, such as clarity and originality.
The PeerRead dataset [1] is the first publicly available col-
lection of scientific peer reviews for research purposes and
has been used in a variety of applications, including paper
acceptance classification [2, 3, 4], review aspect score pre-

diction [5, 6], citation recommendation [7], and citation
count prediction [8].

Previous work on PASP has heavily relied on supervised
learning techniques [1, 5]. However, the available anno-
tated datasets for this task are very restricted, which lim-
its the overall performance of PASP models. To address
this issue and improve PASP performance, we propose
a semi-supervised learning (SSL) method that leverages
contextual features from a larger, unlabeled dataset. Semi-
supervised learning has been widely used in various natural
language processing (NLP) tasks, including classification
[9, 10], sequence labeling [11, 12], and parsing [13, 14].
It has been shown to be effective in model learning by
leveraging a large amount of unlabeled data to compensate
for the lack of labeled data. Semi-supervised learning is
particularly useful for PASP, as a vast number of scholarly
papers are available online and can be easily obtained as
unlabeled data.

Recently, transformers [15] have achieved state-of-the-
art results in a wide range of NLP tasks. However,
transformer-based models are unable to process long se-
quences, such as academic papers, due to their self-
attention operation, which scales quadratically with the se-
quence length. In this paper, we propose a semi-supervised
learning technique for PASP that is capable of handling
long sequences. Our approach is based on the combina-
tion of ladder networks (LNs) [16, 17] and the Long-short
transformer (Transformer-LS) [18]. Ladder networks are
a type of deep denoising autoencoder that incorporates
skip connections and reconstruction targets at interme-
diate layers, while Transformer-LS is a transformer with
a self-attention mechanism that is efficient for modeling
long sequences with linear complexity. We propose the Γ-
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Figure 1 Γ-TLS architecture. The corrupted path shown on the
left-hand side shares the Transformer-LS’s weights and mapping
𝑓 with the clean path on the right-hand side.

Transformer-LS (Γ-TLS), which integrates a Transformer-
LS into the Γ-model [16], a variant of ladder networks.
The unsupervised component of Γ-TLS utilizes a denois-
ing autoencoder to help focus on relevant features derived
from supervised learning.

To the best of our knowledge, our work is one of the first
applications of SSL to the PASP task. Specifically, our
contributions are as follows:

1. We propose Γ-TLS for PASP that incorporates a
Transformer-LS into SSL by training the model us-
ing labeled and unlabeled data simultaneously.

2. The experimental results show that Γ-TLS outper-
forms the supervised learning baselines and naive SSL
methods on the PeerRead benchmark.

2 Γ-Transformer-LS (Γ-TLS)
To overcome the limitation of the vanilla transformer

[15] for long sequences, we adopt the Transformer-LS as
the encoder of our framework. Transformer-LS is more
memory and computationally efficient than the previous
larger models, Longformer [19] and Transformer-XL [20].
For the SSL technique, we choose a denoising network
called theΓ-model [16], which is a variant of ladder net-
works (LNs). The Γ-model eliminates most of the de-
coder, retaining only the top layer, which allows it to be
easily integrated into any network without implementing
a separate decoder. The encoder in the Γ-model still in-
cludes both the clean and corrupted paths, as in the full
ladder network (LN).

Aspect #Neg / #Pos Total
Clarity (Clr) 39 / 97 136
Originality (Ori) 58 / 78 136
Impact (Imp) 110 / 22 132
Meaningful comparison (Com) 80 / 52 132
Soundness correctness (Cor) 54 / 82 136
Substance (Sub) 66 / 70 136
Overall recommendation (Ova) 76 / 60 136

Table 1 Statistics of the ACL Dataset.

Figure 1 illustrates the Γ-Transformer-LS (Γ-TLS). Let
x be the input and 𝑦 be the output with targets 𝑡. The
supervised data of size 𝑁 consists of pairs {x(𝑛), 𝑡 (𝑛)},
where 1 ≤ 𝑛 ≤ 𝑁 . The unsupervised data of size 𝑀 has
only input x without the targets 𝑡, an x(𝑛), where 𝑁 + 1 ≤
𝑛 ≤ 𝑁 + 𝑀 . The network comprises two forward passes,
the clean path, and the corrupted path. The clean path,
illustrated on the right-hand side in Figure 1, produces
clean representation z and clean output y, given by:

z = 𝑓 (h) = 𝑁𝐵 (Wh)
y = 𝜙(𝛾(z + 𝛽))

h = 𝑇𝐿𝑆(x),

(1)

where h denotes the hidden representation obtained from
Transformer-LS (𝑇𝐿𝑆), W is the weight matrix of the linear
transformation 𝑓 , and 𝑁𝐵 indicates a batch normalization.
𝜙 refers to an activation function, where 𝛽 and 𝛾 are train-
able scaling and bias parameters, respectively.

The corrupted representation z̃ and corrupted output ỹ
are produced by adding Gaussian noise n in the corrupted
path (left-hand side of Figure 1). The noise n is applied to
the output of each layer of the Transformer-LS (𝑇𝐿𝑆):

z̃ = 𝑓 (h̃) + n

ỹ = 𝜙(𝛾(z̃ + 𝛽))

h̃ = 𝑇𝐿𝑆(𝑥) + n.

(2)

The supervised cost 𝐶𝑠 is the average negative log-
probability of the corrupted output ỹ matching the target
𝑡𝑛 given the input x𝑛:

𝐶𝑠 = − 1
𝑁

𝑁∑
𝑛=1

log 𝑃(ỹ = 𝑡𝑛 |x𝑛), (3)

Given the corrupted z̃ and prior information ỹ, the denois-
ing function 𝑔 reconstructs the denoised ẑ:
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Metric Models Clr Ori Imp Com Cor Sub Ova Avg.

Acc.

CNN 0.721 0.595 0.833 0.636 0.640 0.566 0.611 0.657
VAT 0.728 0.669 0.841 0.614 0.669 0.662 0.654 0.691
HAN 0.720 0.690 0.841 0.674 0.684 0.654 0.692 0.708

Multi-task 0.736 0.661 0.864 0.713 0.698 0.617 0.670 0.708
Transformer-LS 0.735 0.646 0.856 0.696 0.647 0.677 0.684 0.706
Γ-TLS (Ours) 0.757 0.654 0.856 0.703 0.698 0.706 0.728 0.729

F1.

CNN 0.482 0.442 0.455 0.497 0.513 0.503 0.463 0.479
VAT 0.489 0.620 0.536 0.398 0.620 0.660 0.603 0.561
HAN 0.493 0.613 0.490 0.608 0.661 0.578 0.664 0.587

Multi-task 0.581 0.461 0.621 0.671 0.673 0.612 0.633 0.607
Transformer-LS 0.508 0.549 0.583 0.628 0.557 0.594 0.662 0.583
Γ-TLS (Ours) 0.553 0.558 0.567 0.661 0.639 0.625 0.717 0.617

Table 2 Experimental results. The best result is in bold, and the 2nd best is underlined.

ẑ = 𝑔(z̃, u)

u = 𝑁𝐵 (ỹ),
(4)

where 𝑔 is identical to the one of the LN [16] consisting of
its own learnable parameters. The unsupervised denoising
cost function is given by:

𝐶𝑑 =
1

𝑁 + 𝑀

𝑁+𝑀∑
𝑛=1

𝜆

𝑑
∥z𝑛 − 𝑁𝐵 (ẑ𝑛)∥, (5)

where 𝜆 is a coefficient for unsupervised cost, and 𝑑 refers
to the width of the output layer. The final cost 𝐶 is given
by:

𝐶 = 𝐶𝑠 + 𝐶𝑑

3 Experiments

3.1 Setup

Data The ACL 2017 dataset, included in PeerRead
[1], is used as evaluation data for our PASP system. The
ACL dataset consists of 7 different aspects of scores as
listed in Table 1. These aspect scores were derived from a
mean of multiple reviews and classified into two categories:
positive (scores of 4 or higher) and negative (scores lower
than 4). Although the PeerRead dataset contains both paper
and review texts, we only used the papers to predict the
aspect scores. We utilized the first 8,192 tokens of the
paper as the input. We used SciVocab [21] WordPiece
vocabulary for tokenization. For the unlabeled data, we

used the ACL papers from ScisummNet Corpus 1）[22],
which provides 999 papers in the ACL anthology.

To evaluate all systems, we employed a 5-fold cross-
validation strategy, in which the final result was calculated
as the average of the five folds. As the evaluation metrics,
we utilized both accuracy and Macro F1 score. This allows
us to comprehensively assess the performance of our sys-
tems in terms of both the proportion of correct predictions
and the balance between precision and recall.

Baseline models The competitor algorithms that are
used as baselines for our model are the following:

• CNN - We implemented a CNN model similar to one
in PeerRead [1]. The outputs from the CNN model
are passed through a max pooling layer and finally
through the final linear layer.

• VAT [9] - An SSL method that exploits information
from unlabeled data by applying perturbations to the
word embeddings in a neural network. The model
utilizes LSTM to learn from sequential inputs.

• HAN [23] - A hierarchical attention network for doc-
ument classification. The model consists of two levels
of attention mechanisms at the word and sentence lev-
els to construct the document representation.

• Multi-task [5] - A multi-task approach that automat-
ically selects shared network structures and other re-
view aspects as auxiliary resources. The model is
based on the CNN text classification model.

• Transformer-LS [18] - A transformer for modeling
long sequences with linear complexity. We used the

1） https://cs.stanford.edu/∼myasu/projects/scisumm net/
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Figure 2 Accuracy against the number of labeled data on Over-
all recommendation score prediction. The number of unlabeled
data is fixed to 999 for Γ-TLS.

output of the last layer of the [CLS] token as the
document representation for the classifier.

The implementation details are shown in Appendix A
Implementation details.

3.2 Results

The results are listed in Table 2. Our model, Γ-TLS,
demonstrated superior performance in several aspects com-
pared to the baseline models. When evaluated using the ac-
curacy metric, Γ-TLS outperformed the baseline models on
four aspects: Clarity, Soundness Correctness, Substance,
and Overall Recommendation. Additionally, Γ-TLS out-
performed the baseline models when evaluated using the
Macro F1 score metric on two aspects: Subtance and Over-
all Recommendation. Overall, Γ-TLS performed the best
out of all the models across an average of seven aspects on
both metrics.

Additionally, we observe that the Transformer-LS out-
performs the CNN by almost 5% in accuracy and 10% in
Macro F1 score, which shows that the attention mechanism
is relatively more effective for modeling the documents. By
applying a hierarchical structure, SSL, or multi-task learn-
ing technique, the performance is also further improved.

3.3 Ablation study

In comparison to the Transformer-LS model, the in-
corporating of a denoising network (ladder network) into
Transformer-LS resulted in improved performance in al-
most every aspect, except for Impact on the accuracy
and Impact and Meaningful Comparison on Macro F1
score. On average, Γ-TLS outperformed Transformer-
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Figure 3 Accuracy against the number of unlabeled data on
Overall recommendation score prediction.

LS by 2.3% in accuracy and 3.4% in terms of Macro F1
score metric. This indicates that our assumption, lever-
aging contextual features from unlabeled data, helps to
improve performance.

We also investigated how the number of labeled data
used for training affects the overall performance. As shown
in Figure 2, increasing the number of labeled data tends to
improve the performance of both Γ-TLS and Transformer-
LS, with the exception of a labeled data count of 50, where
the results were not significantly different. Overall, Γ-TLS
consistently outperformed Transformer-LS, which shows
that our proposed SSL method is stably effective on small
training data. In addition, the effect of the number of
unlabeled data on model performance was examined, as
shown in Figure 3. The results indicate that Γ-TLS’s per-
formance improved when the number of unlabeled data was
increased from 100 to 400, but saw no further improvement
beyond that point. Our model, Γ-TLS, still outperforms the
Transformer-LS by using only 100 unlabeled data.

4 Conclusion
In this paper, we focused on the task of automated peer

review aspect score prediction (PASP) and proposed a
novel method called Γ-TLS. The method integrates the
Transformer-LS model with the denoising network, the
Γ-model of ladder networks. Our experimental results
showed that Γ-TLS outperformed the baseline models on
average accuracy and F1 score. In future research, we
plan to investigate ways to leverage related information be-
tween aspects for our model, as well as to generate more
knowledgeable and explainable review comments.
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A Implementation details

A.1 CNN

We used a simple MLP with a single hidden layer of 128
neurons with the max pooling of a single 1D-CNN layer
of 128 filters and window width 5. We used a random
initialization for the word embeddings size of 128 and
trained it with the model. We trained the model using
AdamW optimizer on a linear scheduler, a learning rate of
1e-4 with a batch size of 8.

A.2 HAN

We set the max sentence length to 100 tokens and the
max number of sentences to 600. We used a bidirectional
single-layer GRU size of 100 with an attention mecha-
nism to aggregate the representation on both word and
sentence levels. we also used a random initialization for
the word embeddings size of 300. The model was trained
on AdamW optimizer, learning rate of 5e-5, and batch size
of 8.

A.3 VAT

A.3.1 Recurrent LM Pre-training
We used a unidirectional single-layer LSTM with 128

hidden units. The dimension of word embedding was 128.
For the optimization, we used the Adam optimizer with
a batch size of 32, an initial learning rate of 0.001, and
a 0.9999 learning rate decay factor. We trained for 50
epochs. We applied gradient clipping with norm set to
5.0. We used dropout on the word embedding layer and an
output layer with a 0.5 dropout rate.

A.3.2 Model Training
We added a hidden layer between the softmax layer for

the target and the final output of the LSTM. The dimension
is set to 30. For optimization, we also used the Adam
optimizer, with a 0.001 initial learning rate and 0.9998
exponential decay. Batch sizes are set to 32 and 96 for
calculating the loss of virtual adversarial training. We
trained for 30 epochs. applied gradient clipping with the
norm as 5.0.

A.4 Multi-task

We modified the model from performing a regression
task to a classification task by changing the output layer.
We used CNN with 64 filters and filter width of 2. We used
fastText as initial word embeddings. The hidden dimension
was 1024. We trained the model using Adam optimizer
with learning rate 0.001 and batch size of 8. We trained all
of the candidate multi-task models for two auxiliary tasks
to find the best one.

A.5 Transformer-LS

We used two layers of transformer-ls size 256 with 4
attention heads. The local window attention was set to
128. A [CLS] token was used as a global token. We used
dropout and attention dropout of 0.1. We trained the model
using AdamW optimizer on a linear scheduler with batch
size 8. We tuned the learning rate in the range of {1e-2,
1e-3, 1e-4}

A.6 Γ-TLS

We used the same architecture as the Transformer-LS
(A.5). The denoising cost multipliers λ is set to 1. We
tuned the std of the Gaussian corruption noise in the range
of {0.1, 0.2, 0.3}. We also tuned the learning rate in the
range of {1e-2, 1e-3, 1e-4}. Batch size is set to 8 for both
labeled and unlabeled data, 16 in total.
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