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Abstract
End-to-end Relation Extraction (RE) is a fundamen-

tal problem of information extraction, which includes two
tasks: identifying named entities from text and classify-
ing relations between entities. In this work, we propose
a simple but effective method to extract entities and rela-
tions from text jointly by designing the target output of a
BART-based generative model for Named Entity Recogni-
tion (NER) without changing its architecture. Compared
to existing methods on ChEMU, our method performs bet-
ter on RE and produces comparable results on NER. Our
experimental results also demonstrate that the generative
model designed for a single task is capable of joint learn-
ing.

1 Introduction
To obtain necessary information from natural language

text, it is common to perform Named Entity Recognition
(NER) and Relation Extraction (RE) on the same text. This
task of identifying both entities and the relations between
entities is called End-to-End RE.

In recent times, joint models have gained popularity as
a way to utilize the interaction between entities and re-
lations. A joint model is often more complicated than a
pipeline model. The joint approach can be implemented
using higher-level data structures, such as transforming
tasks into table-filling tasks [1] or graph-based methods
[2]. Another option is to share parameters [3] and repre-
sentations [4] or to add cross-task constraint [5].

The brilliance of the joint model does not mean that the
traditional pipeline method is obsolete. A pipeline frame
of end-to-end RE usually consists of two models for two

different tasks. [6] proposed a pipeline method PURE,
which outperforms most of joint models by adding special
tokens to introduce entity position and type information.
PL-Marker [7] is also a pipeline extractor that advanced
in three datasets, provides a novel span representation ap-
proach to consider the dependencies between the spans.

Models built for end-to end RE task are often complex
and difficult to be implemented for more practical tasks.
Most well-performing models treat the task as a span-based
problem, so that their computation complexity is high.
Even though the length of input text does not exceed the
limit of the pre-trained language model (PLM), if there are
far more entities and relations in the input than those at the
sentence-level, the model may have difficulty handling new
datasets due to its complexity.

Inspired by a recent generative framework BARTNER
[8] developed for the NER task, we convert the end-to-end
RE task into a generation problem. Formulating a span-
based problem to a generation problem can effectively re-
duce the computational complexity - there is no need to
enumerate all possible entity spans, and to pair entities one
by one to extract the relation triple. BARTNER exploits
BART-large as encoder-decoder and achieves state-of-the-
art (SOTA) performance on multiple NER benchmarks.
Since BART-large is a PLM with a large set of trainable pa-
rameters, we make a wild guess that BARTNER can serve
as a simple and efficient model for end-to-end RE if it is
trained with appropriate target outputs, without any change
in its architecture.

Our method achieves competitive results on ChEMU [9]
compared to existing powerful methods. In summary, the
main contributions of this work are listed as follows:

• We adopt a generative framework for NER to end-to-
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Figure 1 Examples of target output under different representation schemes. With three entities and two relations in the input, the target
output consists of two relation spans in REL scheme while five spans (three for entities and two for relations) in ENT+REL scheme.
”[...]” indicates the content in one span. Relation spans in ENT+REL are highlighted by green. Details of all representations are in 2.2.

end RE by providing proper representations, without
any change in model architecture. This proves that
generative models can jointly learning for NER and
RE given proper target outputs.

• Under the representations we designed, we achieve
comparable or better performance than the SOTA
methods for ChEMU.

• Our method is more efficient and flexible in prediction
than others - It is no need to enumerate all possible
entity spans and relation triples, or limit the length of
the span.

2 Method

2.1 Task definition

A golden sample in the ChEMU dataset has the follow-
ing components: All words in a chemical reaction snippet
is concatenated as input. Each mention in the input is an
entity. Each entity may or may not be related to other enti-
ties in the same snippet.

The target output of each sample is a sequence of spans
according to our defined representation. Regardless of the
kind of representation we use, the target output should con-
tain the boundary and type information for each entity, as
well as the information to indicate two entities and the type
for each relation.

2.2 Representation

This section explains how the entities and relations are
represented in our generative model. Please refer to the
examples in Fig.1.

2.2.1 Entity
We followed the three types of entity representations

proposed in [8], namely WORD, BPE, BPE_SPAN, and
added a new type of representation, WORD_SPAN.

• WORD The position indexes of each word in the en-
tity are included in the entity span, concatenated with
the entity type tag.

• BPE The position indexes of each subtoken in the en-
tity are included in the entity span, concatenated with
the entity type tag.

• WORD_SPAN The position indexes of the first
subtokens of the first and last words in the entity are
included in the entity span, concatenated with the en-
tity type tag.

• BPE_SPAN The position indexes of the first and last
subtokens in the entity are included in the entity span,
concatenated with the entity type tag.

2.2.2 Relation (REL)
To make directly generation of relations possible, we

tried a representation scheme as follows. The relation rep-
resentation combines corresponding entity spans in [Head,
Tail, Relation type] or [Tail, Head, Relation type] for-
mat. [Head, Tail, Relation type] are directly named after
the entity representation type (e.g. BPE). When we used
the latter format, we indicate it with (r) (e.g. BPE(r)).

2.2.3 Entity+Relation (ENT+REL)
In some end-to-end RE tasks, entities that do not appear

in any relations may also need to be identified. To cope
with this situation, we propose the representation scheme
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of Entity+Relation. If we do the entity-first generation,
the model will generate all entity spans (in WORD_SPAN
or BPE_SPAN that are consistent with 2.2.1 ). After that,
the model generates all relation spans in following way.

• Start The position indexes of the first subtokens in the
head and tail entities are included, concatenated with
the relation type.

• Start(r) The position indexes of the first subtokens in
the tail and head entities are included, concatenated
with the relation type.

Alternatively, when we do the relation-first generation,
the model generates all relation spans and then all entity
spans ((e.g. BPE_SPAN + Start(r) (Relation-first))).

2.3 Generative model

Following [8], we concatenate the representations of all
spans in each text as the generated output. The order of
spans is determined by the appearance order of entities in
the text when generating entities or by the appearance order
of the head entities when generating relations. We use the
model developed by [8] but a rewritten version by us.

3 Experiment

3.1 Dataset

We experiment on the ChEMU dataset, which involves
entity and event annotations of 1500 chemical reaction
snippets. The event triggers are annotated as entities, and
event arguments are treated as relations between an event
trigger and an argument. Some entities may not be part of
any events. The end-to-end RE on ChEMU is extracting
12 types of entities and 2 types of relations. We use the
official data split that training:development:test = 7:1:2.

DOC ENT REL

Train 900 23210 14310
Dev 225 5439 5448
Test 375 9435 5803
All 1500 38084 25561

Table 1 Statistics of the ChEMU dataset.

This dataset is chosen for two reasons: 1) Each sample
contains rich entity and relation information, while most
of entities are shown in annotated relations. So that the
joint model requires equal effort to learn both entity and
relation extraction information. 2) We hope to experiment
on a practical data and help the development of automatic

extraction of chemical domains, not only on sentence-level
end-to-end task.

3.2 Baseline

We compare our method with the SOTA models on end-
to-end RE task. DyGIE++ [4] is a general framework for
several information extraction tasks including NER, RE,
and EE. It is a span-based method using the dynamic span
graph for better span representation. We implemented Dy-
GIE++ in the default setting, with the PLM: RoBERTa.
Since many samples in ChEMU would exceed the maxi-
mum input length of RoBERTa, we limited the task to the
sentence-level when we apply DyGIE++. 1）2）

The SOTA of end-to-end RE on ChEMU is a pipeline
model provided by Melaxtech [10]. Melaxtech adopts
BioBERT and BiLSTM-CRF for sentence-level NER
while adds a linear classification layer on top of the
BioBERT to predict the label of a candidate entity
pair. The cross-sentence relations are extracted by post-
processing not deep learning model. We directly report
the values published on that paper.

3.3 Evaluation

The evaluation is similar to previous works. If the type
and offsets of the entity match the gold entity, the predic-
tion is correct; if the types and offsets of two entities and
the relation type match the gold relation, the predicted re-
lation is correct. All relations are directed. We report the
precision (P), recall (R) and micro F1 score (F).

4 Results
The result of end-to-end RE (Tab.2) shows several rep-

resentations we provided exceed the baselines, whether
generating relation spans containing all entity informa-
tion (Ours-REL) or generating entity and relation spans to-
gether (Ours-ENT+REL). Ent-first + B_S + Start achieves
the new SOTA RE F1 of 92.61% 3）.

1） This setting makes DyGIE++ inaccessible to cross-sentence rela-
tions, so 0.88% of the relations in the test set are not seen.

2） Due to the limitation of PLM input length, 1.65% of the relations
in test set are unreachable when we perform document-level task by
our approach.

3） Give a null hypothesis: Melaxtech has the same RE performance
as Ours-Ent-first + B_S + Start,the p-value < .00001.
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ENT REL NER RE
Model First Rep Rep P R F P R F

DyGIE++ x x x 94.86% 87.22% 90.88% 95.07% 86.49% 90.58%

Melaxtech x x x 95.71% 95.70% 95.70% 92.01% 91.47% 91.74%

Ours-
REL

x x W 94.64% 80.34% 86.91% 91.34% 83.78% 87.40%
x x W (r) 94.17% 80.79% 86.97% 91.02% 84.58% 87.68%
x x B 95.53% 81.02% 87.68% 86.45% 84.96% 85.69%
x x B (r) 95.88% 81.79% 88.27% 87.26% 85.71% 86.48%
x x W_S 94.80% 84.09% 89.13% 91.58% 89.56% 90.56%
x x W_S (r) 94.83% 84.50% 89.37% 91.51% 89.92% 90.71%
x x B_S 96.03% 85.21% 90.30% 93.20% 91.44% 92.31%
x x B_S (r) 95.91% 84.96% 90.10% 93.23% 91.09% 92.15%

Ours-
ENT+REL

Ent W_S Start 95.04% 93.27% 94.15% 95.52% 89.20% 92.25%
Rel W_S Start 94.79% 93.68% 94.23% 93.15% 86.77% 89.85%
Ent B_S Start 95.41% 94.43% 94.91% 94.98% 90.35% 92.61%
Rel B_S Start 95.59% 94.55% 95.07% 93.71% 87.78% 90.65%
Ent W_S Start (r) 94.45% 93.40% 93.92% 95.30% 88.76% 91.92%
Rel W_S Start (r) 94.78% 93.84% 94.31% 93.21% 88.04% 90.55%
Ent B_S Start (r) 95.39% 94.72% 95.05% 94.72% 89.99% 92.29%
Rel B_S Start (r) 95.83% 94.75% 95.29% 93.19% 88.97% 91.03%

Table 2 Results for the ChEMU dataset. ”W”: WORD; ”B”: BPE; ”W_S”: WORD_SPAN; ”B_S”: BPE_SPAN.
”r” indicates that when generating a relation span, the information of the tail entity is generated before the head entity. Ours-REL means
that the target output follows the setup in 2.2.2, and ”Ours-ENT+REL” generates the target output under the definition in 2.2.3.

4.1 Representation matters

We found performance differences among different
combinations. There is a huge gap between span and non-
span representations. The F1 scores of RE between B(r)
and B_S(r) in Ours-REL differ by nearly 6 points. We spec-
ulate that representations in the form of spans are stronger
because they are lesser affected by the length of the entities.
There are many long chemical substance names that may
be divided into dozens of subtokens in ChEMU, making
the task faced by non-span representation more difficult.
In the case of REL, losing a subtoken in the middle will
cause a relation and an entity falsely predicted simultane-
ously. However, when entity generation is not that closely
tied with relation generation (ENT+REL), both the perfor-
mance on NER and RE get better. Another reason for the
low NER recalls by Ours-REL is that not every entity is
included in relations. In addition, reversing the generation
order of head and tail entities, or reversing the generation
order of entities and relations, also have clear effects.

4.2 Joint learning: DyGIE++ vs. Ours

All representations in ENT+REL outperform DyGIE++
with differences between 3 to 4 points of NER F1 scores.
Under the default setting of DyGIE++, the loss weight of

RE is 1.0 and the weight of NER is 0.2, which can guaran-
tee the effect of RE, but the part of NER is far inferior to
our method. Except for Rel-first + W_S + Start and Rel-
first + W_S + Start(r), other representations in ENT+REL
outperform DyGIE++. The low recall of DyGIE++ is pri-
marily responsible for this gap. The limitation on span
length makes DyGIE++ incapable of predicting long en-
tities in the ChEMU. Overall these results, demonstrate
that our method is a stronger joint model than DyGIE++
on ChEMU4）.

5 Conclusions
By proposing representations suitable for end-to-end

RE, our approach allows the generative model designed for
NER tasks to learn both entity- and relation-level informa-
tion without increasing model complexity. This method
provides SOTA results on the ChEMU dataset. Our work
is still in progress - as we have only experimented on texts
rich in entity and relation information. We will find out
how well this method performs on more practical tasks,
such as a task with higher proportion of cross-sentence re-
lations, or event extraction. Also, we will keep exploring
the potential of generative models in joint learning.

4） Give a null hypothesis: DyGIE++ has the same RE performance
as Ours-Ent-first + B_S + Start, p-value < .00001.
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A Implementation details
We rewrote the BARTNER [8] using NumPy, PyTorch

and Hugging Face’s Transformers referring to Yan’s public
code. https://github.com/yhcc/BARTNER The codes
of pre-processing and evaluation are written with NumPy
and PyTorch.

The generative model is trained with max sequence
length 1024 and batch size 1 for 30 epochs, without lim-
itation on the length of each span. Only a single run for
each representation.

No hyperparameter search and early stopping in our ex-
periments. The details of hyperparameters are in Tab.3.
We do not apply beam search during decoding.

All the entity and relation tags are set as special tokens
and be initiated by prompt initiation. The parameter size
of the model we implemented is 1633.624064M when we
use BART-large [11] as the encoder-decoder. All exper-
iments are conducted on are trained on a 20-core(CPU)
machine with 1 GPU (NVIDIA A100 for NVLink 40GiB
HBM2). The wallclock time of training one representation
is approximately 15000s (30 epochs in total), maximum
memory reaches 28.802G on the ChEMU dataset.

Hyper Value

adam_epsilon 1e-06
batch_size 1
betas [0.9, 0.999]
decoder_drop_rate 0.3
grad_clip 5.0
hidden_size 1024
learning_rate 1e-05
num_epochs 30
reset 5
vocab_size 50280
warmup_ratio 0.01
weight_decay 0.001

Table 3 Part of hyperparameters used in experiments.
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