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Abstract
We propose a fast and scalable non-autoregressive S2S

model that is flexible enough to employ the widely success-
ful BERT as the backbone for the encoder and the decoder.
In this paper, we pre-train BERT models using the non-
autoregressive approach, which we call non-autoregressive
BERT-to-BERT (NAR-B2B). We evaluate the NAR-B2B
model using the standard GLUE tasks for natural lan-
guage understanding. Experimental results show that the
pre-training strategy is effective for BERT and the non-
autoregressive approach enables fast training and decod-
ing.

1 Introduction
Pre-trained language models (PLMs) have been widely

successful across many natural language processing (NLP)
tasks. Especially, the Bidirectional Encoder Represen-
tations from Transformers (BERT) model [1] has re-
ceived widespread attention due to its ability to infer
contextualised word representations. With this ability,
BERT can help obtain superior performance in down-
stream tasks by leveraging simple fine-tuning. Recently,
pre-training sequence-to-sequence (S2S) models such as
BERT2BERT [2], BART [3], T5 [4], and Optimus [5]
have been introduced. They are applied to various tasks in
NLP since they are well suited to problems such as sum-
marisation and question answering. These models employ
transformer-based bidirectional models, such as BERT, as
an encoder and use as a decoder powerful auto-regressive
models like GPT-2 [6], which generate tokens in a left-to-
right manner. Among these models, Optimus is based on

variational autoencoders (VAE) [7, 8], which can be con-
sidered the first large-scale pre-trained deep latent variable
model and proven useful for non-autoregressive model-
ing [9].

These models, however, have several limitations. First,
the models need many computational resources to decode,
especially for longer texts. For instance, Optimus limited
their inputs to the length of 64, and it also limited the train-
ing data. Second, some models use different architectures
for their encoders and decoders. For example, Optimus is
based on BERT and GPT-2. Such inconsistency in models
results in different tokenisation between input and output.

To tackle these limitations, we aim at building a large-
scale non-autoregressive pre-trained S2S model using the
BERT as the backbone for both encoder and decoder mod-
els. The non-autoregressive modelling allows fast decod-
ing and the use of longer texts. Unlike the Optimus and
BART models, our model does not rely on autoregressive
GPT-2-like models. The input and output tokenisation be-
come consistent by using the same BERT architecture.

In this paper, as the first step towards the above mod-
elling, we propose to pre-train the BERT models using the
non-autoregressive sequence-to-sequence model, which
we call non-autoregressive BERT-to-BERT, or NAR-B2B.
We train the entire non-autoregressive S2S model with an
autoencoding objective, which is inspired by BERT. To
investigate better autoencoding, we compare autoencoder
(AE) and variational autoencoder (VAE) models in the
S2S modelling following Optimus. We evaluate the per-
formance of the pre-trained NAR-B2B models to confirm
that the BERT models can be trained via S2S modelling.
We also evaluate and compare the pre-trained NAR-B2B
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Figure 1 The NAR-B2B architecture (inspired by Optimus).
The dotted line illustrates the ground truth words (GTW) setting
where the decoder receives GTW as input.

models in the encoder and decoder. Experimental results
show the effectiveness of our modelling in both speed and
performance. First, we could pre-train the NAR-B2B mod-
els with more training data and less training time using the
S2S model. Second, our pre-trained NAR-B2B models in
both encoder and decoder perform better than the Optimus-
encoder-based BERT and the original BERT model.

2 Pre-training NAR-B2B

To pre-train non-autoregressive BERT-to-BERT (NAR-
B2B) models using the S2S modelling, we train the {𝜙, 𝛿}
parameters, which corresponds to the parameters of the
BERT encoder and the non-autoregressive (NAR) BERT
decoder using an autoencoding objective, i.e., AE or VAE.
The architecture of the proposed model is illustrated in
Figure 1.

2.1 Model Architecture

The model architecture of NAR-B2B is composed of
a multi-layer Transformer-based encoder and decoder, in
which the embedding layer and the stack of transformer
layers are initialised with BERT [1]. To leverage the ex-
pressiveness power of existing pre-trained BERT models,
we initialise our BERT encoder BERT𝜙 and BERT decoder
BERT𝛿 with the pre-trained BERT parameters. Here, we
denote the number of layers (i.e., Transformer blocks) as
L, the hidden size as H, and the number of self-attention
heads as A. Specifically, in this paper, we employ bert-base-
cased (L=12, H=768, A=12, Total Parameters=110M) for
both encoder and decoder models.

Input Sequence Following the BERT setup, we first
append a [CLS] and a [SEP] token on both sides of the
source sentence. Then, inspired by the input format repre-
sentation [10], we merge sentences for faster training and
flexibility in dealing with longer sequences. Specifically,
we merge multiple sentences with a special token [SEP] 

to ensure that the source sequence length is not longer than
the BERT default maximum sequence length, which is 512.
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BERT Encoder Our NAR-B2B model first feeds the
input sequence 𝑿 = 𝒙 [𝐶𝐿𝑆 ] , 𝒙1, . . . , 𝒙𝑛 to the BERT𝜙 em-
bedding layer. In BERT, the first token of every sentence is
a special classification token ( [CLS] ). The last layer’s hid-
den state 𝒉[𝐶𝐿𝑆 ] ∈ ℝ𝐻 corresponding to this token is used
as the sentence-level representation. It further constructs
the latent representation 𝒛 = 𝑾𝐸𝒉[𝐶𝐿𝑆 ] where 𝒛 ∈ ℝ𝑃

is a 𝑃-dimensional vector and 𝑾𝐸 ∈ ℝ𝑃×𝐻 is the weight
matrix.

Building Decoder Input The latent embedding z is
added to the [PAD]  and positional embeddings to con-
struct the decoder’s input sequence 𝑿𝐷 . In addition to
this PAD setting, we tried to use the input sequence of the
encoder to construct the input as shown as the dotted line
in Figure 11）. Under this setting, the decoder receives the
encoder’s ground truth words (GTW) as input. The embed-
ding representation 𝒙𝐷𝑖 of the 𝑖-th token of the decoder’s
input sequence is calculated as 𝒙𝑖 + W𝐷z. To facilitate z
in BERT decoding, we add the latent vector z to all inputs
of the intermediate layers in the decoder.

Non-autoregressive BERT Decoding Our non-
autoregressive BERT decoder BERT𝛿 receives the in-
put 𝑿𝐷 and generates the original sequence in a non-
autoregressive manner (all tokens simultaneously).

2.2 Training

To train NAR-B2B, we employ AE and VAE objectives.
AE To train NAR-B2B with the AE objective, the

model entirely focuses on maximizing the mutual infor-
mation (MI) [5, 11] to recover a sentence from the latent
space.

VAE The VAE objective consists of two terms, (a) re-
construction and (b) Kullback-Leibler (KL) regularization,
balanced by a weighting hyper-parameter 𝛽. When training
with the KL regularization, the KL tends to vanish [11, 5].
[11] proposed a cyclical annealing schedule (CAS), which

1） Since our target is the pre-training of BERT, we tried to use the
encoder’s input sequence in the decoder.
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repeats the annealing process of beta multiple times by
showing that the KL vanishing is caused by the lack of
good latent codes in the training decoder at the beginning
of optimization. To train NAR-B2B with the VAE objec-
tives, we progressively improve latent representation z by
adapting a CAS [11], where 𝛽 is repeatedly annealed from
0 to 1. We split the training iterations into ten cycles, start-
ing with 𝛽 = 0 and ending with 𝛽 = 1. Within each cycle,
there are three consecutive stages: training AE (𝛽 = 0) for
0.5 proportion, annealing 𝛽 from 0 to 1 for 0.25 propor-
tion, and fixing 𝛽 = 1 for 0.25 proportion (as illustrated in
Figure 2).

3 Experiments

The pre-training procedure follows existing literature on
PLM pre-training. Following BERT, we use BookCor-
pus2）[12] and English Wikipedia3）to pre-train our NAR-
B2B model. (details in Appendix B).

Table 1 shows the performance comparison of our NAR-
B2B model with BERT [1] and Optimus [5]. The NAR-
B2B model yields higher performance than the BERT and
Optimus models. BERT and Optimus (VAE) are consid-
ered baseline models, and their scores are taken from the
Optimus [5] literature. In this table, the scores in the
bold text indicate the best performance of a certain task
in GLUE datasets. The results of the pre-trained encoder
model of NAR-B2B using the AE objectives (NAR-B2B
(AE) + Encoder) show that the model performs higher than
the baseline models on five tasks. The pre-trained decoder
model of NAR-B2B using the AE objectives (NAR-B2B
(AE) + GTW + Decoder) outperforms the baseline mod-
els on all tasks except QQP. Since our NAR-B2B (AE) +
GTW + Decoder models outperform the NAR-B2B (AE) +
Encoder model, we evaluate the pre-trained decoder model
of NAR-B2B with the VAE objectives (NAR-B2B (VAE)
+ Decoder model) and report the results in Table 1, where
the model outperforms the baseline models.

Table 2 shows the performance of the NAR-B2B de-
coder using the AE, full-VAE, VAE with GTW, and VAE
with PAD on a sample dataset (10% from 207M data). For
the full-VAE model, we annealed 𝛽 from 0.25 to 1 to let
the model always learn only in VAE objectives. During 𝛽

2） https://github.com/huggingface/datasets/
tree/master/datasets/bookcorpus

3） https://github.com/huggingface/datasets/
tree/master/datasets/wikipedia

annealing, we follow the same proportion as the cyclical
schedule in VAE stated in Section 2.2. This table shows
the effectiveness of AE and VAE models with different set-
tings over the baselines and full-VAE approaches, where
VAE with PAD achieves the best score in terms of aver-
age in the four tasks of the GLUE tasks. Our NAR-B2B
with AE and VAE achieve competitive scores as the orig-
inal BERT, compared with the VAE with the PAD model.
Our NAR-B2B model initialised with sample data perform
comparable scores of Table 1.

Training large models on large-scale data sets is com-
putationally challenging. In Optimus [5], computational
efficiency is missing to train the model. Therefore, in our
earlier attempt, we train the Optimus using 32M sentences
that needs around 20K iterations using a sequence length
of 64 for 46 hours. In contrast to training the NAR-B2B
model, it needs around 27K iterations using a sequence
length of 512 using 207M sentences for 39 hours. Our
model can learn around seven times larger data than Op-
timus with lower cost while improving performance (de-
tails in Appendix A). Experimental results based on GLUE
tasks with different objectives of NAR-B2B have demon-
strated strong performance of NAR-B2B models. Besides,
NAR-B2B can efficiently learn and decode the large-scale
dataset by providing longer sequences. In future exten-
sions, it would be interesting to investigate how effectively
we can train our PLM in several hours without degrading
the performance by adapting efficient transformers like Big
Bird [13], where the maximum sequence length is 4096.

We report the performance of WNLI based on 634 exam-
ples of the GLUE dataset separately in Table 3 for readers’
interest. The GLUE benchmark consists of nine datasets,
but BERT [1] literature ignores the WNLI dataset because
of its problematic nature, as they reported. The Optimus
literature reports the Optimus performance that includes
WNLI; meanwhile, Optimus reports the score along with
the WNLI dataset by re-running the BERT model. The Op-
timus model performs lower than BERT but outperforms
the BERT model while adding the WNLI score. In this ta-
ble, our NAR-B2B model with ground truth words (GTW)
as input to the decoder model outperforms the BERT and
Optimus model 4）. In contrast, our NAR-B2B model with
PAD setting as decoder input outperforms the BERT model

4） In decoder input, the Optimus model follows the GTW setting,
while PAD setting in Optimus is absent.
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PLM
MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE Avg.
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k
ACC ACC ACC ACC MCC P.C. F1 ACC

BERT 0.835 0.909 0.912 0.923 0.598 0.886 0.868 0.700 0.829
Optimus (VAE) 0.834 0.909 0.908 0.924 0.573 0.888 0.873 0.697 0.825
NAR-B2B (AE) + GTW + Encoder 0.839(+) 0.908(-) 0.911(-) 0.929(+) 0.608(+) 0.887(-) 0.897(+) 0.711(+) 0.836(+)
NAR-B2B (AE) + GTW + Decoder 0.838(+) 0.906(-) 0.913(+) 0.928(+) 0.619(+) 0.897(+) 0.893(+) 0.704(+) 0.837(+)
NAR-B2B (AE) + PAD + Decoder 0.830(-) 0.905(-) 0.911(-) 0.931(+) 0.591(-) 0.890(+) 0.891(+) 0.690(-) 0.830(+)
NAR-B2B (VAE) + GTW + Decoder 0.838(+) 0.908(-) 0.910(-) 0.928(+) 0.606(+) 0.897(+) 0.886(+) 0.686(-) 0.832(+)
NAR-B2B (VAE) + PAD + Decoder 0.841(+) 0.904(-) 0.915(+) 0.926(+) 0.608(+) 0.894(+) 0.889(+) 0.693(-) 0.834(+)

Table 1 Comparison of BERT, Optimus, and NAR-B2B with the AE and VAE objectives on the validation set of GLUE. (+) denotes
our models performance being higher than baseline models, (-) indicates our models performance being lower. PAD denotes the decoder
receives the BERT special token [PAD] as its input, while GTW denotes the decoder receives the ground truth words as its input.

PLM
MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE Avg.
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k
ACC ACC ACC ACC MCC P.C. F1 ACC

NAR-B2B (AE) + GTW + Decoder 0.841 0.907 0.908 0.924 0.607 0.895 0.890 0.672 0.831
NAR-B2B (full-VAE) + GTW + Decoder 0.836 0.907 0.912 0.923 0.616 0.891 0.883 0.628 0.825
NAR-B2B (VAE) + GTW + Decoder 0.841 0.907 0.911 0.926 0.601 0.894 0.885 0.672 0.830
NAR-B2B (VAE) + PAD + Decoder 0.838 0.902 0.908 0.935 0.611 0.896 0.893 0.711 0.837

Table 2 Comparison of NAR-B2B model on a sample dataset (10% from 207M sequences). NAR-B2B performances with the AE,
full-VAE, VAE, and VAE with PAD objectives. Comparison is on the validation set of GLUE.

PLM Avg. Score WNLI (ACC)
Table 1 634

BERT 0.829 0.507
Optimus (VAE) 0.825 0.563
NAR-B2B (AE) + GTW 0.837 0.620
NAR-B2B (VAE) + PAD 0.834 0.563

Table 3 Comparison of BERT, Optimus (VAE), and NAR-B2B
with the WNLI dataset.

but exact score to the Optimus model.

4 Related Work
Pre-trained Language Models (PLMs) are neural net-

works trained on large-scale datasets that can be fine-tuned
on problem-specific data. Some of the most popular have
been GPT-2 [6], XLNet [14], and XLM [15]. They became
widely adapted after BERT [1] reported SOTA results for
11 NLP tasks.

Li et al. [5] proposed the first large-scale language VAE
model, Optimus. They connect a BERT encoder and a
GPT-2 decoder using a universal latent embedding space.
The model is first pre-trained on a large text corpus and
then fine-tuned for various language generation and un-
derstanding tasks. It achieves SOTA on VAE language
modelling benchmarks.

Rothe et al. [2] developed a Transformer-based
sequence-to-sequence models by describing several com-
binations of model initialization that include BERT2BERT,
a BERT-initialized encoder paired with a BERT-initialized
autoregressive decoder. Our implementation and ar-
chitecture of NAR-B2B is a non-autoregressive VAE-
based model without cross-attention which differs from
BERT2BERT.

The Cyclical Annealing Schedule [11] was proposed to
mitigate the problem of KL regularisation vanishing. They

increase the 𝛽 weighting hyper-parameter multiple times,
which progressively enables learning of more meaningful
latent codes by leveraging the results of previous learning
cycles as a warm restart.

NAR models have been recently investigated in NLP
tasks due to their efficiency. For example, Gu et al. [16]
introduced a NAR model for machine translation (MT)
based on the transformer [17]. This reduced latency by
90% and achieved competitive output quality with only
a slight decrease in translation performance compared to
similar-sized autoregressive (AR) models. Furthermore,
Gu and Kong [9] further minimised the gap with AR mod-
els achieving SOTA performance on several MT bench-
marks.

5 Conclusion
In this paper, we introduced a fast and scalable S2S

model non-autoregressive BERT-to-BERT (NAR-B2B)
that aims at building a large-scale NAR pre-trained S2S
model using BERT as the backbone for both encoder and
decoder models. To investigate better modelling, we com-
pared AE and VAE models in the S2S modelling. We eval-
uated the NAR-B2B model’s contribution over the nine
language understanding tasks, and the results show that
the NAR-B2B model with different settings consistently
performs better in comparison to the original BERT and
Optimus models. In future work, we plan to expand the
experiments to more language combinations for MT and
additional language generation tasks.
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A Computational Efficiency

Table 4 shows the computational efficiency of NAR-B2B
in comparison to the Optimus model. We train the Optimus
and NAR-B2B based on a single epoch. Optimus can use
a larger batch size because of the shorter sequence length.

Model Data Batch Iter. GPUs Time
Optimus 32M 1,600 20K 200 46H
NAR-B2B + AE 207M 600 27K 200 38.5H
NAR-B2B + VAE 207M 600 27K 200 39H

Table 4 Computational details

B Experimental Settings

B.1 Pre-training

The BookCorpus data set is already processed into
86M sentences. We load Wikipedia with the version of
20200501.𝑒𝑛 from huggingface datasets and split the text
from text field into sentences by detecting newlines that
lead to 121M sentences. We ignore the title  field in
Wikipedia. To pre-train our NAR-B2B model, our model
receives 207M sentences from combining BookCorpus and
Wikipedia datasets. Using sentence merging described in
Section 2.1, it further compresses the data from 207M into
16M longer sequences split into 100 files as the input to
the BERT model.

The NAR-B2B model we trained had 12 layers in the
encoder and decoder. We used a batch size of 600 and
trained the model for 13,302 steps. We optimized our
PLM models using AdamW [18] with the learning rate
of 5e-5 for BERT-base-cased. We trained each language
model with 200 GPUs (NVIDIA V100 for NVLink 16GiB)
with a batch size of 600. The maximum sequence length
is set to 512.

B.2 Language Understanding

We consider the GLUE benchmark [19], which consists
of nine datasets for general language understanding. Fol-
lowing the fine-tuning setting in [1, 5], we use the learning
rate [2, 3, 4, 5] × 10−5 with different seeds and train the
model for three epochs. We select the best performances
among different runs. We employ Optimus evaluation
script 5）for GLUE to report all the scores.

5） https://github.com/ChunyuanLI/Optimus
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