
Decoding Sentence Representations for Text Generation

Weihao Mao∗, Xuchen Yang∗, Liyan Wang and Yves Lepage
早稲田大学大学院情報生産システム研究科

mao weihao@asagi.waseda.jp, yang xuchen@asagi.waseda.jp,
wangliyan0905@toki.waseda.jp, yves.lepage@waseda.jp

Abstract
Large-scale pre-trained language models have shown

their potential in generating nearly human text. However,
they require a large amount of data to be trained from.
We explore the task of decoding sentence representations
to reconstruct texts. We design two variants of a base-
line vector-to-sequence model and explore different vector
composition methods: unweighted and weighted sum, and
concatenation. Experimental results show that a Trans-
former trained from scratch on sequences of word vectors
achieves the highest BLEU score (94.2 BookCorpus sen-
tences and 96.9 on Tatoeba sentences).

1 Introduction
Text generation is a core task of natural language pro-

cessing. It is part of machine translation, text summa-
rization, and dialogue systems. It consists in outputting
the corresponding human-understandable text which cor-
respond to a given input [1]. Various neural network mod-
els such as Variational Autoencoder (VAE) and Generative
Adversarial Networks (GAN) have been designed for text
generation [2, 3, 4]. Pre-trained language models based
on Transformers [5] have achieved the state of the art [6].
However, these models require large amounts of data for
training and high power consumption because of the use of
GPUs.

An alternative solution to large pre-trained language
models is to use word embedding spaces to create sen-
tence representations and decode these sentence represen-
tations into sentences [7, 8, 9]. This reduces the size of
the resources needed for text generation. The experiments
reported in [8] with such a model are however limited to
short sentences from the Tatoeba corpus1, where the av-

∗These two authors contributed equally.
1https://tatoeba.org/en/

erage length of sentences is seven words. In this paper,
we explore this model further and extend to more general
cases.

We examine different composition methods of word vec-
tors into sentence representations and conduct experiments
with different architectures for decoding these sentence
representations into a sentence.

2 Methods
Suppose that there is a pre-trained embedding model

which projects words to 𝑑-dimensional vectors in a seman-
tic space. Given a sentence, we can obtain a sequence of
word vectors by representing words of the sentence in isola-
tion. In Section 2.1, we examine four different composition
models to derive effective representations for sentences.
Then, in Section 2.2, we introduce a decoding mechanism
for text generation, i.e., transferring compositional repre-
sentations into sentences.

2.1 Composition methods

The simplest method to represent a sentence from word
vectors is to sum up the word vectors of the words ap-
pearing in the sentence. This will be the first sentence
representation that we will use, as a baseline. We call it
unweighted sum.

Although the above method is simple and effective in
some tasks [10], it has the drawback of giving the same
importance to functional words as to meaningful words.
As we care about the meaning of the sentence, we choose
to give more weights to meaningful words while lowering
the importance of functional words. For that, we use the
index document frequency (idf) as weights, i.e., we use
the idf-weighted sum of word vectors as a sentence repre-
sentation (see Equation (1)). This produces semantically
more relevant sentence representations [11]. We call this

― 702 ―

言語処理学会 第29回年次大会 発表論文集 (2023年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

weighted sum.

𝑣𝑠 =
∑
𝑤∈𝑠

idf𝑤 𝑣𝑤 (1)

Here, 𝑣𝑤 is the word vector of word 𝑤 in some pre-trained
word embedding space. idf𝑤 is the inverse document fre-
quency (idf) of word 𝑤, computed by considering each
different sentence as a different document.

To capture long-distance dependencies between words,
we propose to use the encoder part of an autoencoder model
to generate a sentence representation from a sequence of
word vector. We call this encoder of autoencoder.

The three above sentence representations lose the in-
formation about word order in the sentence, and mix-up
information coming from different words on each vector
dimension. So as to use more fine-grained information
and retain the word order information, we propose to con-
catenate word vectors into a 𝑑 × 𝑙 matrix, where 𝑙 is the
number of words. This fourth sentence representation will
be called concatenation.

2.2 Text generation

To perform text generation, i.e., to decode a sentence
representation into a sentence, we explore the use of three
different architectures of neural networks.

The problem of solving sentence analogy puzzles is ad-
dressed in [8]. For that, a vector-to-sequence model is pro-
posed to learn how to transfer a sentence vector, computed
from the sentence vectors given in the analogy puzzle, into
a sequence of words. This is done by pre-training a sep-
arate sentence decoder. Although the decoding method
achieved reasonable results on the semantico-formal anal-
ogy dataset used [12], the accuracy drops significantly on
other datasets containing longer sentences or different sen-
tence styles.

We propose two decoders with different architectures:
RNN-based autoencoder and Transformer-based decoder.

We then implement the RNN-based decoder that is the
same as the vector-to-sequence model to decode sentence
vectors.

For the RNN-based autoencoder model, we keep the
decoder part consistent with the decoder proposed by [8]
and only add a single-layer BiLSTM as the encoder. BiL-
STM learns how to convert the sequence of vectors into a
sentence vector in a fixed-size and feeds it to the decoder.

We also train a model from scratch that only has the
decoder part with the Transformer structure. In the Trans-
former decoder, we use padding and cutting to make all
vectors a fixed-size. As for decoder input, we take a fixed-
size sequence of vectors added with positional encoding.
The hidden vector encoded by the network is mapped to
the dimension of the vocabulary, and then the output is the
word with the highest probability in each position. Fur-
thermore, we introduce the attention mechanism into the
vector-to-sequence model to solve the problem that the de-
coder does not perform well in decoding long sentences.

For Transformer-based decoder, we establish the model
with a single Transformer layer.

3 Experiments

3.1 Datasets

We experiment with data from two corpora in the English
language. The first one is the Tatoeba corpus in which
sentences are short and are basically composed of only one
main clause. The second one is BookCorpus [13]. The
sentences come from novels by many different authors.

We randomly select around 60,000 (exactly 63,336) En-
glish sentences from each corpus, which we divide into
training, validation, and test sets with the respective pro-
portions of 80%, 10%, and 10%. The average length of
sentences from the Tatoeba corpus is 6.7 in words and 28.5
in characters. For BookCorpus, it is 13.2 in words and 62.7
in characters.

3.2 Setups

We use the pre-trained fastText model [14] to encode
words into vectors.

To explore the decoding performance in terms of the
quality of sentence representations, we use four different
vector composition methods: the unweighted sum of the
word vectors (sum) and the weighted sum of the word
vectors using scalar factors of the idf weighting (wsum),
fixed-size vector generated by BiLSTM (enc) and the con-
catenation of word vectors (concat). We conduct four ex-
periments on decoder models 2 in the following settings:

• sum-RNN: this is the model proposed in [8]. The

2The model size is affected by the size of the vocabulary. Considering
that we want to use a small model for this task, the vocabulary of each
model is just initialized with the training data.

― 703 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

4 5 6 7 8 9 10
0

20

40

60

80

100

Sentence length (in words)

B
LE

U
sc

or
e

sum-RNN wsum-RNN
enc-RNN concat-Trans

(a) Tatoeba

5 10 15 20 25 30
0

20

40

60

80

100

Sentence length (in words)

B
LE

U
sc

or
e

sum-RNN wsum-RNN
enc-RNN concat-Trans

(b) BookCorpus

Figure 1 Performance, in BLEU, of the different models, by lengths of sentences, for each of the corpora.

sentence vector is the unweighted sum of the word
vectors of the words in the sentence. This model is
our baseline model.

• wsum-RNN: same as the previous model, except that
the sentence vector is the idf-weighted sum of the
word vectors.

• enc-RNN: the sentence representation is the fixed-size
vector generated by the encoder of autoencoder . The
decoder part of the autoencoder is used to output a
sequence of words.

• concat-Trans: the sentence representation is the con-
catenation of the sequence of word vectors. A
Transformer-based decoder is used to output a se-
quence of words. This Transformer model is trained
from scratch.

4 Results and discussion

1 5 10

0

20

40

60

80

100

Size of training data (×104)

B
LE

U
sc

or
e

sum-RNN wsum-RNN
enc-RNN concat-Trans

Figure 2 Performance of models learned from training data of
different sizes.

4.1 Results

We use three evaluation metrics to quantify the decoding
performance: accuracy, BLEU, and Levenshtein distance.
Table 1 shows the results of the four experiments introduced
in the previous section.

In terms of accuracy, i.e., outputting exactly the input
sentence, the idf-weighted sum sentence representation
provides an improvement of 16.0% and 3.1% on the two
corpora, Tatoeba and BookCorpus, in comparison with the
unweighted sum sentence representation (baseline model).
On Tatoeba, the two proposed models (RNN model with
the autoencoder structure and Transformer decoder) out-
perform the baseline by 34.7% and 51.4% , respectively.
On BookCorpus, their accuracy is lower than on Tatoeba,
especially for the RNN model. Although the accuracy of
the Transformer decoder has also declined, it is still the
best among all models, by a large margin.

It is worth mentioning that the Levenshtein distance us-
ing Transformer decoder is only 0.1. This means that even
when decoding a not exactly same sentence, only less than
one word in the sentence is incorrect on average.

Moreover, the Transformer decoder obtain 94.2 BLEU
score, indicating that the decoded wrong sentences are still
highly similar to the reference sentences.

We explore the effect of length of sentences and size
of dataset on decoding result. As shown in Figure 1, on
Tatoeba, the performance of baseline model using two sen-
tence representations drop heavily as the length of sentence
increasing. For the RNN-based autoencoder, the BLEU
score only decreases slightly. Transformer decoder still

― 704 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Input Model BLEU Accuracy Levenshtein distance
Vector composition method Architecture Size (M) (%) in words in chars

Tatoeba
unweighted sum RNN 3.8 62.5 40.5 1.4 6.7
weighted sum RNN 3.8 68.9 56.5 1.3 5.6
encoder of autoencoder RNN 4.4 86.2 75.2 0.4 2.2
concatenation Transformer 4.6 96.9 91.9 0.1 0.6

BookCorpus
unweighted sum RNN 10.0 15.0 2.6 8.9 36.3
weighted sum RNN 10.0 14.8 5.7 9.5 37.0
encoder of autoencoder RNN 10.6 39.6 19.6 5.1 23.8
concatenation Transformer 10.8 94.2 76.0 0.3 1.9

Table 1 Performance of the different models on the two datasets Tatoeba and BookCorpus. Recall that the sentences are three times
longer in average in BookCorpus than in Tatoeba. The model sizes for each corpus is different because we filter out any word that does
not belong to the training set from the word embedding space. The vocabulary size of Tatoeba is much lower that that of BookCorpus.

Reference Results generated by
sum-RNN wsum-RNN enc-RNN concat-Trans

this obviously meant
something to him .

obviously meant to
something him.

obviously meant
something meant to
him .

this obviously meant
something to him .

this obviously meant
something to him .

i ’m willing to let him
do that , but i ’m not
sure he ’d bring me to
the garage for it .

i ’m willing to let me
, but i ’m sure that he
’d do to let him that
it ’d not .

i ’m sure i ’m sure to
bring me to bring me
, but i ’m sure for me
to do ’m .

i ’m willing to let him
do there , but i ’m
not sure i would put
me toward the hospi-
tal for it .

i ’m willing to let him
do that , but i ’m not
sure he ’d come me to
the garage for it .

Table 2 Various text generation results on BookCorpus with the different models.

maintain the great performance even when the sentences
become longer.

On the BookCorpus corpus, in which the sentence length
varies greatly, the performance of the three RNN models
decreases rapidly as the sentence length increases. When
the sentence length is close to 30, the BLEU scores of the
three RNN models are close to 0. However, the BLEU
score of Transformer decoder is stable across all sentence
lengths. The model with attention mechanism exhibits
better performance than the RNN models when decoding
longer sentences. Some decoding examples with different
lengths are presented in Table 2.

For the size of the training data set, the three models
show interesting and different trends. As shown in Fig-
ure 2, for the Transformer decoder, increasing the training
data improves the BLEU Score, but the improvement is
not significant. With the increase of training data, BLEU
Score has a more noticeable improvement for the other
two models of RNN structure, especially the RNN of the
autoencoder structure.

4.2 Discussion and Future Work

The use of sequence of vectors as sentence representa-
tion achieved better results in the decoding experiments.

The performance of the Transformer decoder is much bet-
ter than that of other models, especially on BookCorpus
according to four different indicators. The attention mech-
anism plays a critical role in it. In the future, we will also
apply attention on the RNN structure to let model focus on
important words.

Although the experiments on sequence of vectors ob-
tain better results than sentence vector, sentence vector
is a lighter representation than sequence of vectors. The
sentence representation in vector form is more efficient in
manipulation and computation than the form of the se-
quence of vectors. Research on improving sentence vector
decoding is indispensable.

5 Conclusion
We proposed two different models for decoding sentence

representations into actual sentences. Our results showed
that both the Transformer decoder and the RNN-decoder
have a specific improvement compared with the latest re-
search results. The Transformer decoder can also perform
well in more general cases. Improving the decoder effect
is of great significance for exploring the potential infor-
mation of the vector space and future work from sentence
representation mapping to text.

― 705 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

References
[1] Albert Gatt and Emiel Krahmer. Survey of the state of the

art in natural language generation: Core tasks, applications
and evaluation. J. Artif. Int. Res., Vol. 61, No. 1, p. 65–170,
jan 2018.

[2] Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang,
Guoyin Wang, Dinghan Shen, Changyou Chen, and
Lawrence Carin. Topic-guided variational auto-encoder
for text generation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 166–
177, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[3] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew
Dai, Rafal Jozefowicz, and Samy Bengio. Generating sen-
tences from a continuous space. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Language
Learning, pp. 10–21, Berlin, Germany, August 2016. As-
sociation for Computational Linguistics.

[4] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan
Ritter, and Dan Jurafsky. Adversarial learning for neural di-
alogue generation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pp. 2157–2169, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, Vol. 30, , 2017.

[6] Genta Indra Winata, Andrea Madotto, Zhaojiang Lin,
Rosanne Liu, Jason Yosinski, and Pascale Fung. Language
models are few-shot multilingual learners. In Proceedings
of the 1st Workshop on Multilingual Representation Learn-
ing, pp. 1–15, Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics.

[7] Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and
Percy Liang. Generating sentences by editing prototypes.
Transactions of the Association for Computational Lin-
guistics, Vol. 6, pp. 437–450, 2018.

[8] Liyan Wang and Yves Lepage. Vector-to-sequence models
for sentence analogies. In 2020 International Conference
on Advanced Computer Science and Information Systems
(ICACSIS), pp. 441–446, 2020.

[9] Pengjie Wang, Liyan Wang, and Yves Lepage. Generat-
ing the middle sentence of two sentences using pre-trained
models: a first step for text morphing. In Proceedings of
the 27th Annual Conference of the Association for Natu-
ral Language Processing, pp. 1481–1485, Kokura, Japan,
March 2021. Association for Natural Language Process-
ing.

[10] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A sim-
ple but tough-to-beat baseline for sentence embeddings.
In International conference on learning representations,
2017.

[11] Marek Rei and Ronan Cummins. Sentence similarity mea-
sures for fine-grained estimation of topical relevance in

learner essays. In Proceedings of the 11th Workshop on
Innovative Use of NLP for Building Educational Applica-
tions, pp. 283–288, San Diego, CA, June 2016. Association
for Computational Linguistics.

[12] Yves Lepage. Analogies between short sentences: A
semantico-formal approach. In Human Language Tech-
nology. Challenges for Computer Science and Linguistics:
9th Language and Technology Conference, LTC 2019, Poz-
nan, Poland, May 17–19, 2019, Revised Selected Papers,
p. 163–179, Berlin, Heidelberg, 2019. Springer-Verlag.

[13] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja Fi-
dler. Aligning books and movies: Towards story-like vi-
sual explanations by watching movies and reading books.
In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword
information. Transactions of the Association for Compu-
tational Linguistics, Vol. 5, pp. 135–146, 2017.

― 706 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

