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Abstract
Visual scene understanding, such as visual question an-

swering (VQA), is expected to improve as it benefits people
with disabilities in daily life. The Text-based VQA task as
an extension of VQA is more challenging to tackle, in
which the questions’ answers must relate to the text in-
formation with reading and reasoning like humans. In
this work, we propose an integrated self- and gated cross-
attention encoder module to fuse multi-modalities captured
in an image effectively. We evaluated our method on the
TextVQA dataset, and the results demonstrated that our
model outperformed baseline models on the accuracy eval-
uation in the text-based VQA task.

1 Introduction
In recent decades, visual and natural language under-

standing has grown into crucial domains for innovation in
Artificial Intelligence (AI) [1, 2], with more and more ap-
plications reshaping lifestyles [3]. Such as automatic navi-
gation for guiding vehicles [4], dialogue systems [5–7], etc.
In daily life, many visual scenes and questions contain text-
related information. Thus, it should be helpful for humans
to obtain an accurate answer when they ask a question about
the visual scene related to the text, especially for visually
impaired people.

The target task of this work refers to constructing a vi-
sual question answering (VQA) model that can handle the
question-answering problem while requiring reading and
reasoning the text in images (TextVQA). And this makes it
more complicated and challenging to tackle. For example,
in Figure 1, several words exist in the image in different
colors (green, brown, and white) to introduce a small bean
around the Lake Trasimeno area of Italy. When asked
about ‘what word is written in white text?’, it is required to
generate an answer ‘trasimeno’, which is written in white
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Figure 1 Overview of our method for TextVQA: We integrate
self- and gated cross-attention mechanisms into a V&L encoder.

color and difficult to see. And this requires reading and
reasoning from all text information in the image.

In [8], they combine different modalities with a mul-
timodal transformer over a large joint embedding space.
Thus it lacks specific modality pair computation, e.g., a
pair between the question and the OCR text information.
On the other hand, the image-related cross-attention com-
putation needs to be improved in [9]. And the utilization
of the global image modality is absent in both works.

We propose a multimodal encoder, which maximizes
using multiple modalities in an image and models the re-
lationship with both self- and gated cross-attention mech-
anisms. Therefore, our model can handle the text-based
VQA problem with a stronger visual-language encoder,
especially to obtain visually informed question (language)
features.

The main contributions of our work are as follows:
• We introduce an additional vanilla attention block for

the entire image to complete the utilization of the
visual information.

• To obtain richer features for text and visual modalities,
we introduce using a pre-trained CLIP [1] model for
OCR tokens and the entire image.

• We introduce a Flamingo’s [10] gated cross-attention
mechanism to further model the relationship between
the entire image (visual) and the question (language).
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Figure 2 Overview of our proposed encoder-decoder architecture. TrmD and DPN denote the general Transformer decoder and the
dynamic pointer network, respectively. The introduced integrated self- and gated cross-attention encoder are given in green.

2 Problem Statement
The focus of this paper is the TextVQA task. The model

is expected to predict (output or generate) an answer to a
question which should be a deduction based on the text and
the visual information in the image.　The input and output
in our experiments are defined as follows,

• Input: An image that contains text and one image-
related question. In detail, an image, including the
entire image, detected object regions and detected
OCR tokens/regions.

• Output: An answer that answers the question by read-
ing and reasoning over the text in the image.

3 Proposed Method
Our method is inspired by the M4C [8] and SSbase-

line model [11], multimodal Transformer networks that
have been successfully applied to the TextVQA task. Fig-
ure 2 shows the overview of our proposed self- and gated
corss-attention encoder-decoder architecture. Our pro-
posed method is applicable to more than just this work
and can be applied to other visual-and-language (V&L)
tasks that consider language- and image-related modali-
ties as inputs. Because efficiently fusing and modeling the
relationship between visual and textual modalities is con-
sidered the basic strategy for solving any V&L problems.

Our model comprises two grand divisions: encoder and
decoder modules. The encoder module consists of a se-
quence of stacked attention blocks with self- and gated
cross-attention mechanisms. The Transformer decoder
module with a dynamic pointer network (DPN) is built
to predict the answers from a fixed vocabulary or the OCR
tokens in an image, i.e., the answer generation module.

3.1 Input
The input 𝑿 to our model is defined as follows:

𝑿 = {𝑿Q, 𝑿img, 𝑿obj, 𝑿ocr,v, 𝑿ocr,s}

where 𝑿Q, 𝑿img, 𝑿obj, 𝑿ocr,v, and 𝑿ocr,s denote the ques-
tion, entire image, detected objects, recognized OCR re-
gions (visual) and OCR tokens (semantic), respectively.

We use the CLIP (RN50x4) model to obtain a 640-
dimensional feature vector (𝒙glob) for each entire image.

Moreover, we encode the detected objects in an im-
age through the fc6 layer of Faster R-CNN [12] and fine-
tuning the last layer on the TextVQA dataset, {𝒙 (𝑚)

obj,fr |
𝑚 = 1, · · · , 𝑀}, where 𝑀 denotes the number of the ob-
jects considered in the image. The same Faster R-CNN
model and fine-tuning are also applied to the OCR region
feature extraction, {𝒙 (𝑛)

ocr,fr | 𝑛 = 1, · · · , 𝑁}, where 𝑁 de-
notes the number of the OCR tokens considered in the
image. We obtain a 2048-dimensional feature vector for
each region. The spatial features (4-dimensional bounding
box features, e.g., 𝒙 (𝑚)

obj,bx ) are also used in our experiments.
The recognized OCR token features 𝒙 (𝑛)

ocr,tok are made
up of (1) character-level Pyramidal Histogram of Char-
acters (PHOC) [13] feature for each OCR token (604-
dimensional 𝒙 (𝑛)

ocr,phoc), (2) FastText features 𝒙 (𝑛)
ocr,ft for the

OCR tokens in subword-level (300-dimensional) and (3)
640-dimensional CLIP-based OCR token features 𝒙 (𝑛)

ocr,clip.
Note that we use the same pre-trained CLIP model for
image and OCR token’s feature extraction. We use a three-
layer BERT [14] model to obtain a 768-dimensional em-
bedding for each token. This BERT model is fine-tuned
during training.

𝒉glob = 𝑓LN (𝑾glob𝒙glob) (1)

𝒉 (𝑚)
obj = 𝑓LN (𝑾obj,fr𝒙

(𝑚)
obj,fr) + 𝑓LN (𝑾obj,bx𝒙

(𝑚)
obj,bx) (2)
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𝒉 (𝑛)
ocr,v = 𝑓LN (𝑾ocr,fr𝒙

(𝑛)
ocr,fr) + 𝑓LN (𝑾ocr,bx𝒙

(𝑛)
ocr,bx) (3)

𝒉 (𝑛)
ocr,s = 𝑓LN (𝑾ft𝒙

(𝑛)
ocr,ft +𝑾ph𝒙

(𝑛)
ocr,phoc +𝑾c𝒙

(𝑛)
ocr,clip) (4)

We apply Layer Normalization 𝑓LN (.) to various ex-
tracted features. 𝑾· denotes weight matrix.

3.2 Visual-and-language encoders
The first encoder module consists of a stack of attention

blocks to model the relationship between the question and
other text or visual modalities using self-attention. The
inputs of each attention block are the embeddings (𝑿Q =

{𝒙 (1)
q , · · · , 𝒙 (𝐿)

q } of the question sequence, 𝑄 = {𝑞𝑖}𝐿𝑖=1,
and the encoded features of another modality (e.g., 𝒉 (𝑛)

ocr,v

and 𝒉glob). The outputs of an attention block refer to
the weighted sum of subword-based features (𝑿′

𝑄) and the
summarizing feature of another modality (e.g., 𝑿′

ocr,v).
In practice, we firstly input the question features into

a fully connected feed-forward network consisting of two
convolutions with kernel size 1.

𝒉 (𝑖)
q = Conv1D

(
ReLU

[
Conv1D(𝒙 (𝑖)

q , 1)
] )

, 𝑖 = 1, . . . , 𝐿 (5)

Then, the output 𝒉 (𝑖)
q goes through a self-attention pro-

cess before it works with other modalities. We define the
self-attention operation as follows,

𝒉′ = SelfAttn(𝒉) = softmax
(
𝒉𝑾𝑄𝑾𝐾

⊤𝒉⊤
√
𝑑𝑘

)
𝒉𝑾𝑉 (6)

where 𝑾· denotes a learnable weight, 𝑑𝑘 is obtained as
𝑑𝑘 = H/heads (Appendix A.2). Here, we parallelly perform
self-attention on the question modality with independent
parameters as the input for different attention blocks.

𝜶𝑖 = SelfAttn(𝒉 (𝑖)
q ) (7)

For each attention block, we obtain the first output,
weighted sum of subword-based features (𝑿′

𝑄) for the ques-
tion sequence, as follows,

𝑿′
𝑄 =

𝐿∑
𝑖=1

𝜶𝑖𝒙
(𝑖)
q (8)

It is also used as the guidance for calculating the
cross-modality (e.g., Question and OCR regions) atten-
tion weights (see formula (9) and (10)). In this example,
the value of 𝑛 (𝑛 = 1, · · · , 𝑁) varies with the number of
OCR tokens recognized in the image. It also can be the
number of detected objects in the image.

𝒖𝑛 = ReLU(𝑾𝑞𝑿
′
𝑄) ⊙ ReLU(𝑾ℎ𝒉

(𝑛)
ocr,v) (9)

𝜷𝑛 = SelfAttn(𝒖𝑛), 𝑛 = 1, . . . , 𝑁 (10)

We obtain the summarizing feature of the OCR visual
modality as the second output of the attention block.

𝑿′
ocr,v =

𝑁∑
𝑛=1

𝜷𝑛𝒉
(𝑛)
ocr,v (11)

Finally, the element-wise multiplication is applied to the
outputs of each attention block for final fusion.

𝒛ocr,v = 𝑿′
𝑄 ⊙ 𝑿′

ocr,v (12)
As described above, our module consists of four this

kind of attention blocks for the modality pair Q-and-OCR-
visual (as an example), Q-and-OCR-token, Q-and-Object,
and Q-and-Image.

Moreover, to further model the relationship between an
image and its corresponding question, a learnable gated
cross-attention mechanism is introduced. We firstly define
the cross-attention operation as follows,

𝒉̃ = CrossAttn(𝒉1, 𝒉2) = softmax
(
𝒉1𝑾𝑄𝑾𝐾

⊤𝒉2
⊤

√
𝑑𝑘

)
𝒉2𝑾𝑉

ℎ1 and ℎ2 can be any two modalities’ features. Here they
refer to the entire image and the question modalities. Then,

𝒉𝑄 = 𝑿𝑄 + tanh(𝑾𝑎) ⊙ CrossAttn(𝑿𝑄, 𝒉glob), (13)

where 𝑾𝑎 denotes the attention-gating parameter.

𝒉 𝑓 = 𝒉𝑄 + tanh(𝑾𝑏) ⊙ FFW(𝒉𝑄), (14)

where FFW is feed-forward network, and 𝑾𝑏 denotes the
FFW-gating parameter. These layers followed by a regular
self-attention and another FFW on language modality to
obtain visually informed question (language) features,

𝒉𝑠 = 𝒉 𝑓 + SelfAttn(𝒉 𝑓 ) (15)

𝒛𝑖𝑚𝑔→𝑞 = 𝒉𝑠 + FFW(𝒉𝑠) (16)

Finally, the obtained 𝒛𝑖𝑚𝑔→𝑞 will be concatenated with
the four outputs by a sequence of stocked attention blocks to
obtain a final context embedding for the decoding process.

3.3 Transformer decoder
We introduce a transformer decoder module with a dy-

namic pointer network to interactively generate answers
from a fixed answer vocabulary (𝑣 = 1, · · · , 𝑉) or copy
from the OCR tokens (𝑛 = 1, · · · , 𝑁) in an image alterna-
tively. In the implementation, the probability computation
for the selection from the fixed answer vocabulary 𝑝( 𝒚̂voc

𝑡 ,𝑣 )
or OCR tokens 𝑝( 𝒚̂ocr

𝑡 ,𝑛) is given as follows,

𝑝( 𝒚̂voc
𝑡 ,𝑣 ) = softmax

(
(𝒘 (𝑣)

voc )⊤𝒛 (𝑡 )dec
)

𝑝( 𝒚̂ocr
𝑡 ,𝑛) = softmax

(
(𝑾ocr𝒛

(𝑛)
ocr )⊤ (𝑾dec𝒛

(𝑡 )
dec)

)
, (17)
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where 𝑾ocr and 𝑾dec denote 𝑑 × 𝑑 matrices. 𝒛 (𝑛)ocr (𝑛 =

1, . . . , 𝑁) denotes the d-dimensional transformer output of
the 𝑁 OCR tokens in the image. For both two formula,
the decoder embedding (d-dimensional 𝒛 (𝑡 )dec) for the cur-
rent time-step 𝑡 is obtained depending on the previously
predicted token at time-step 𝑡-1 and its corresponding rep-
resentation 𝒙 (𝑡 )

dec. In other words, in the case of the predic-
tion at time-step 𝑡-1 is a word from the fixed vocabulary,
we feed its corresponding weight vector 𝒘 (𝑣)

voc as the trans-
former input. On the other hand, if the prediction (at time-
step 𝑡-1) from the OCR tokens, its OCR representation
𝒉 (𝑛)

ocr,all (obtained from OCR visual and semantic modali-
ties) is considered as the transformer input to obtain the
decoder embedding for the time-step 𝑡.

For the final prediction, we take the argmax on the con-
catenation of both probabilities [𝑝( 𝒚̂voc

𝑡 ,𝑣 ); 𝑝( 𝒚̂ocr
𝑡 ,𝑛)] and se-

lect the top element with the highest score as the answer
from the concatenation of 𝑉 + 𝑁 candidates.

4 Experiments
4.1 Quantitative results

We performed the experiments using the TextVQA
dataset (See Appendix A.3) with the experimental setting
given in Appendix A.2. We used the standard evaluation
for VQA tasks, accuracy (Acc.), which was evaluated based
on the predicted answer against the ground truth (GT) an-
swers provided by humans.

Table 1 shows the quantitative results of the baselines
and our method. The scores in Table 1 represent the evalu-
ations reported in the papers or with average and standard
deviation obtained based on five trials in our experiments.
Note that the baselines and proposed method share 𝒙 (𝑛)

ocr,phoc,
𝒙 (𝑛)

ocr,ft, 𝒙
(𝑛)
ocr,fr, 𝒙

(𝑛)
ocr,bx, 𝒙 (𝑚)

obj,fr, and 𝒙 (𝑚)
obj,bx as inputs.

Table 1 Qualitative results.

Method OCR
system

𝒙 (𝑛)
ocr,clip, Acc. on

val.𝒙glob
(1) M4C [8] Rosetta-en 39.40
(2) SSbaseline [11] SBD-Trans 43.95

(3) SSbaseline SBD-Trans 43.90 ±0.11(reproduced)
(4) Ours SBD-Trans ✓ 44.93 ±0.16

The experimental results demonstrate that the proposed
method outperformed the SSbaseline model (43.9%), with
an increase of 1%. More significant improvements (5.5%)
were obtained compared with the M4C method (39.4%).

Q: what is in the bottles?
A: (ours) [5-hour] [energy]

    (SSbaseline) sugar energy
    (GT) ['cherry 5 hour energy', 
            '5 hour energy']

Q: what does the sign say after
command model?

 A: (ours) [service] [module] 
     (SSbaseline) command module
     (GT) ['module', 'service module', 
              'usa', 'sevice module']

Figure 3 Qualitative samples of the predicted answers based
on our proposed method and the SSbaseline method.

4.2 Qualitative results
Figure 3 shows the qualitative samples of our model

compared with the SSbaseline model. The left subfigure
shows that the baseline model failed to predict the correct
answer due to the wrong OCR token selection. In contrast,
according to the question asked about the contents of those
bottles, our model correctly selected to use the accurate
OCR tokens ‘5-hour’ with ‘energy’. The subfigure on the
right shows that our model predicted the correct answers
by considering the OCR tokens ‘service’ and ‘module’ and
their corresponding objects (the sign after the command
model). The baseline method failed in these two samples.

5 Conclusion
In this paper, we focused on the TextVQA task that

generates answers according to the questions that need text
understanding and reasoning. We would like to emphasize
the following contribution of this wok:

• We proposed using image modality with an additional
attention block to complete the utilization of the visual
information in an image.

• To obtain the rich features for different modalities, we
introduced using a pre-trained CLIP for OCR tokens
and an entire image.

• We introduced a Flamingo’s gated cross-attention
mechanism to further model the relationship espe-
cially for the entire image and the question.

• Our method outperformed the baseline methods on
accuracy evaluation with the TextVQA dataset.
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A Appendix

A.1 Loss function

We combine using the multi-label binary cross-entropy
and a new policy gradient loss introduced in [11].

A.2 Experimental setup

The experimental setting for the hyperparameters is sum-
marized in Table 2. L，H，and heads denote the number
of hidden layers, hidden size, and the number of attention
heads of a Transformer model, respectively. Our exper-
iments were performed on four Tesla V100 GPUs with
64GB memory in total. For each performance, it required
approximately 43 hours to train over 34,000 iterations. Our
model had 187,456,002 (187M) trainable parameters. The
prediction for one sample took approximately 70 ms.

Table 2 Hyperparameter setting of our experiments

Attention blocks L: 12 H: 768 heads: 12
Gated cross-attention L: 8 H: 1024 heads: 10
Optimizer Adam
Learning rate 1 × 10−4

Max iteration 34,000
Batch size 256
Fixed vocab. size 5k
Decoding steps (max) 12
# of OCR tokens (max) 50
# of Objects (max) 100

A.3 Dataset

In our experiments, we used the standard dataset
TextVQA, released to facilitate the progress of the Text-
based image captioning task in 2019. This dataset was an-
notated via crowd-sourcing based on the Open Images (v3)
dataset. The annotators were asked to identify images con-
taining text, then collected 1-2 questions requiring reading
and reasoning about the text in the image; ten answers were
collected according to different questions.

The TextVQA dataset contains 45,336 questions (sam-
ples) in English with their corresponding answers collected
based on 28,408 images. The total number of tokens is
308,753, and the number of unique tokens is 9,568. The
average question length is 7.44 words. Note that we did
not perform any pre-processing for the questions’ statis-
tics. The average answer length is 1.58 [9]. The dataset
is divided into training, validation, and test sets with sizes

34,602, 5,000, and 5,734, respectively. There is no overlap
between any two splits.

We used the training set to update the parameters of
our model. We evaluated our model on the validation set
because the test set’s ground truth (GT) answers were not
provided. The experiments followed standard procedures
in which the validation set was not used for training or
tuning hyperparameters.

A.4 Ablation Studies

Table 3 presents Ablation Studies of our proposed
method. We defined the following three ablation condi-
tions:

(i) Without (w/o) image-related attention block & gated
cross-attention operation for language and image
(=SSbaseline).

(ii) Without (w/o) gated cross-attention operation for lan-
guage and image.

(iii) Our proposed method (full).

In Table 3, compared with Condition (i), the accuracy
was increased by approximately 0.4% by introducing an
additional vanilla attention block with image modality and
CLIP features (Condition (ii)). Thus, the image modality,
absent in the baseline model introduced in our proposed
method, increases the TextVQA task’s performance. In
comparing Condition (iii) with Condition (ii), a further
improvement (0.6%) was obtained by introducing a gated
cross-attention module for image and question modalities
in the encoding process. In summary, these results indicate
that only using the object and OCR modalities with ques-
tions is insufficient; image as one of the visual modalities
is also indispensable to the text-based VQA performance.
Furthermore, more robust attention computation between
the image and question modality is essential in the encoder
process in our TextVQA task.

Table 3 Ablation studies on TextVQA.

Condition (i) (ii) (iii) 𝒙 (𝑛)
ocr,clip, Acc. on val.

𝒙glob
(1) ✓ 43.90 ±0.11

(2) ✓ ✓ 44.31 ±0.14

(3) ✓ ✓ 44.93 ±0.16
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