DAS-VQA: Dual Awareness Systems for Improving Generalization in Visual Question Answering

Trang Nguyen Naoaki Okazaki
Tokyo Institute of Technology,
Department of Computer Science, School of Computing
trang.nguyen@nlp.c.titech.ac.jp okazaki@c.titech.ac.jp

Abstract

Multimodal reasoning is a crucial factor of generalizability in the Visual Question Answering (VQA) task. Recent studies deal with generalization by refining unimodal models but pay less attention to the combination of multimodalities. We propose Dual Awareness Systems VQA (DAS-VQA), a novel framework to improve the Out-of-Distribution generalization by enhancing multimodal reasoning. DAS-VQA consists of two components: (1) the input processing component to identify the purpose of a question, and (2) the selection component for a proper strategy to give an answer. The experimental results show that DAS-VQA improves the generalization on real-life images and medical datasets without extra human annotations.

1 Introduction

The Visual Question Answering (VQA) task is to provide an answer to the questions regarding an image. Recent studies (Niu et al., 2021; Wen et al., 2021; Niu and Zhang, 2021) raised an issue that the models tend to answer a question while ignoring the input image, which hinders the Out-of-Distribution (OOD) generalization. For more details, OOD generalization is the ability to perform well in OOD cases rather than just recalling the co-occurrence of data during the independent and identically distributed (IID) training (Zhang et al., 2021; Kawaguchi et al., 2022). The reasons come from the biases in human knowledge that cause some correlations between the question and answer distribution (Niu et al., 2021; Wen et al., 2021). For instance, the question Is this ...? is usually supposed to be a Yes/No question (e.g. Is this a cat?) instead of a multiple choice question (e.g. Is this a cat or dog?). Therefore, there is a chance to give a correct answer just by replying Yes or No.

Some promising approaches to solve this issue are (1) reducing the linguistic correlation (Niu et al., 2021; Wen et al., 2021), (2) strengthening the visual processing (Yang et al., 2020), and (3) balancing the answer distribution by generating new image-question pairs (Gokhale et al., 2020). However, these approaches focus only on either language or the visual modality without considering the causality among input properties such as question types, objects, or backgrounds.

In fact, the VQA task requires not only the joint of visual and language processing but also the multimodal reasoning between them (Wang et al., 2022b; Nguyen et al., 2022). In addition, it is impossible to cover all combinations of the visual and language properties in a single dataset (Cao et al., 2021) due to the diversity of data in real life (Gokhale et al., 2020). Therefore, the reasoning across modularities should be considered as a core aspect to solve the bias issue and improve OOD generalization (Cao et al., 2021).

In this work, we propose Dual Awareness Systems VQA (DAS-VQA) as a novel framework to improve the OOD generalization by emphasizing multimodal reasoning, inspired by the causality theory (Daniel et al., 2015; Wang et al., 2022a). Assuming that question types lead to differ-
ent strategies to answer the question, DAS-VQA consists of two components called the Awareness System (AS): (1) the first one is placed in the inputs processing part, which is responsible for implicitly recognizing the question’s purpose; and (2) the second one takes the processed inputs and the question purpose into account to select one from a list of strategies to predict the answer.

Our contributions are summarized as follows: (1) We propose DAS-VQA as a novel framework to improve OOD generalization by enhancing the multimodal reasoning that is compatible with a diversity of multimodal tasks and domains; and (2) DAS-VQA is the first work for VQA task that represents the multimodal reasoning as the interaction of double mediators in a causal graph, which corresponds to the two layers of cognition.

2 Preliminaries

2.1 The causal-effect in general

A basic form of a causal relation is defined as \(X \rightarrow Y \) with the treatment \(X \) and outcome \(Y \). To explore the reasons of \(X \) causes \(Y \), Pearl and Mackenzie (2018) mentioned mediator to dissect the effect into direct and indirect effects.

2.1.1 Mediators in causality

A single mediator \(M \) forms an indirect path \(X \rightarrow M \rightarrow Y \) as described in Figure 2a. On the other hand, considering two ordered mediators \(M_1 \) and \(M_2 \) in Figure 2b, we have three indirect paths:

- Case 1: \(X \rightarrow M_1 \rightarrow Y \): only through \(M_1 \)
- Case 2: \(X \rightarrow M_2 \rightarrow Y \): only through \(M_2 \)
- Case 3: \(X \rightarrow M_1 \rightarrow M_2 \rightarrow Y \): through both \(M_1 \), \(M_2 \)

Following Daniel et al. (2015), we denote \(Y_{i,j,k,l} \) is the outcome conditioned by \(i, j, k, l \in \{0, 1\} \). \(i \) equals to 1 when the treatment \(X \) is given and 0 otherwise when a virtual value is defined for \(X \). \(j, k, l \) equal to 1 when \(Y \) is affected by the indirect path described as Case 1, Case 2, and Case 3, respectively, and 0 otherwise. For instance, \(Y_{1,0,0,1} \) represents the outcome that is affected by a given \(X \) and two factors: \(X \rightarrow Y \) and \(X \rightarrow M_1 \rightarrow M_2 \rightarrow Y \).

2.1.2 Total Effect and related terms

The term Total Effect (TE) described in Equation 1 compares the effect of \(X \) on \(Y \) through any indirect paths. The general form of Natural Direct Effect (NDE) is defined in Equation 2 to analyze a particular indirect case. In addition, the TE can be decomposed into the sum of NDE and Total Indirect Effect (TIE) as in Equation 3.

\[
\begin{align*}
TE &= Y_{1,1,1,1} - Y_{0,0,0,0} \quad (1) \\
NDE_{j,k,l} &= Y_{1,1,1,1} - Y_{0,0,j,k,l} \quad (2) \\
TIE &= TE - NDE \quad (3)
\end{align*}
\]

2.2 The causal-effect view in VQA

Consider the causal graph for the VQA task depicted in Figure 3a in which the inputs \(V \) and \(Q \) cause an answer \(A \), and a mediator \(K \) represents the commonsense knowledge space. We have: Direct paths: \(Q \rightarrow A, \ V \rightarrow A \) and Indirect path: \((V, Q) \rightarrow K \rightarrow A \). Notice that the direct paths represent the effects only from the question or image, while the indirect path represents the relation of the question, image, and the knowledge space to cause an answer. Therefore, the causality approach for the VQA task aims to enhance the indirect effect and eliminate the direct effects.

3 Proposed method: DAS-VQA

3.1 Dual Awareness Systems

The DAS-VQA, illustrated in Figure 1, provides an architecture backbone to promote the effects of multimodal reasoning between the input image, question, and commonsense knowledge to yield an answer in the VQA task. The key idea of DAS-VQA is to construct two awareness systems (AS) to have (1) distinct approaches in understanding the multimodal input and (2) various strategies in giving the answer by assuming that different questions’ purposes lead to diverse ways to answer a question. Subsequently, DAS-VQA learns to operate a large number of multimodal...
reasoning flows, which is interpreted as choosing an appropriate pair of approach and strategy for a particular multimodal input. Therefore, DAS-VQA is able to deal with the diversity of multimodal combinations, which improves the OOD generalization.

Technically, the causal view of DAS-VQA, as presented in Figure 3c, contains the given values of treatment as \((v, q)\) that causes an answer \(A\), controlled by the two ASs denoted as mediators \(A_S^1\) and \(A_S^2\). Subsequently, any paths that do not go through \(A_S^1\) \((\text{e.g., } q \rightarrow A_S^1 \rightarrow A)\) are considered as unimodal paths since they do not produce any multimodal understanding from the input pair. Likewise, any paths that do not go through \(A_S^2\) \((\text{e.g., } (v, q) \rightarrow A_S^2 \rightarrow A)\) are considered as monolithic paths since they do not involve separated strategies to give the answer. Finally, DAS-VQA emphasizes multimodal reasoning by eliminating paths without a completed reasoning flow, including unimodal and monolithic paths. Notice that the question types and strategies are implicitly distinguished by the model during training, not explicitly defined by humans.

3.2 Implementation details

Following the notation in Section 2.1.1, we denote
\[Z_{1} \in R^{N} \] is the predicted answer controlled by \(I, S_1, S_2, S_{12} \in \{0, 1\} \) \((N\) is the vocabulary size). Specifically, \(I\) is 1 when the input pair is given; \(S_1\) is 1 when the path corresponding to Case 1 exists and 0 otherwise. \(S_2\) and \(S_{12}\) are defined similarly with Case 2 and Case 3.

Let \(x\) denote the multimodal representation of the input pair computed by \(A_S^1\). Next, define the list of answers \(z \in R^{N}\) computed by Neural Network (NN) models: \(z_v = W_v(v)\) and \(z_q = W_q(q)\) as direct effects; \(z_{v'} = W_{v'}(v)\) and \(z_{q'} = W_{q'}(q)\) as indirect effects only through \(A_S^2\); \(z_{MF} = W_{MF}(x)\) as an indirect effect only through \(A_S^1\) in which \(W_{MF}\) is designed as a monolithic function and \(z_{AS} = W_{AS}(x)\) as indirect effect through both of ASs.

\[
Z_{1-111} = z_q + z_v + z_{q'} + z_{v'} + z_{MF} + z_{AS} \tag{4}
\]

\[
Z_{1-110} = z_q + z_v + z_{q'} + z_{v'} + z_{MF} \tag{5}
\]

Training \(A_S^1\) and the NNs above are trained by Cross Entropy Loss on \(Z_{1-111}\), which is described in Equation 4, with the target as the correct answer in the training data.

Inference Following Equation 3, the predicted answer probability is defined as the subtraction of \(Z_{1-111}\) as TE and \(Z_{1-110}\) (Equation 5) as NDE, with the meaning of eliminating effects from uncompleted reasoning paths.

For more details about the model design of this study, we refer the readers to Appendix B.

4 Experiments and Results

Our experiments validate two hypotheses: (1) the awareness of the question’s purpose is beneficial to improving the VQA performance, and (2) the awareness of multimodal reasoning helps enhance the OOD generalization.

4.1 Experiment setup

4.1.1 Datasets

To examine the first hypothesis, we conduct an experiment on four datasets in two domains: (1) real-life: VQA-CPv2 (Agrawal et al., 2017) and VQAv2 and (2) medical: PathVQA (He et al., 2021) and VQA-RAD (Lau et al., 2018). To examine the second hypothesis, we observe results on the VQA-CPv2 dataset since this is an OOD dataset with significant differences in answer distribution per question category between the training and test sets.

4.1.2 Baselines

In VQA-CPv2 and VQAv2, we compare DAS-VQA and CFVQA (Niu et al., 2021), which use a similar approach, i.e., the causal view of the VQA task to overcome the language priors. CFVQA attempts to eliminate the effect of the question-only branch, which is distinct from our method that promotes multimodal reasoning. We compare DAS-
Table 1: Comparison on VQA-CPv2 and VQAv2. The bolded values indicate the best results.

<table>
<thead>
<tr>
<th>Method</th>
<th>VQA-CPv2 Test</th>
<th>VQAv2 Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Y/N</td>
</tr>
<tr>
<td>CF-VQA</td>
<td>55.1±0.1</td>
<td>90.6±0.3</td>
</tr>
<tr>
<td>DAS-VQA</td>
<td>57.8±0.3</td>
<td>91.1±0.3</td>
</tr>
</tbody>
</table>

Table 2: Overall score comparison on PathVQA and VQA-RAD. The bolded values indicate the best results.

<table>
<thead>
<tr>
<th>Test set</th>
<th>PathVQA</th>
<th>VQA-RAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMQ-VQA</td>
<td>48.8±0.12</td>
<td>68.2±0.3</td>
</tr>
<tr>
<td>DAS-VQA</td>
<td>50.9±0.3</td>
<td>70.0±0.3</td>
</tr>
</tbody>
</table>

VQA to MMQ-VQA (Binh D. Nguyen, 2019) on PathVQA and VQA-RAD as the first work that reports results on PathVQA and the state-of-the-art on VQA-RAD. We report the mean and standard error over 5 seeds for all methods.

4.2 Experiment results

4.2.1 Quantitative Results

The IID results on VQAv2, PathVQA, and VQA-RAD are presented in Tables 1 and 2. Overall, DAS-VQA outperforms the baselines in all answer categories. Taking a deeper look at the OOD result on VQA-CPv2, DAS-VQA robustly outperforms the baseline by a large margin, especially +20.1 point in the Number type.

4.2.2 Qualitative Results

Debiased answer distribution As illustrated in Figure 4, DAS-VQA exhibits the OOD generalizability when overcoming the biased answers in training set on multiple question categories, whereas the baseline shows the biased distribution of the memorized answers.

Debiased sample Figure 5 provides a comparison of debiasing results from the baseline and DAS-VQA. DAS-VQA answers the question correctly by recognizing the question purpose (the multiple choice question) accurately, although the baseline is trapped in the Yes/No question type and gives an incorrect answer. For further discussion on qualitative results, we refer the readers to Appendix D.

5 Related Work

Causality approaches in VQA Niu et al. (2021) creates the question-only, (i.e. $Q \rightarrow A$) to basically capture the linguistic biases. They utilize the counterfactual training objective similarly to Equation 3 to subtract the bias from the conventional answer distribution to obtain a debiased one. In contrast, DAS-VQA extends the biases not only from the linguistic but also from the monolithic strategy of the model for different question purposes.

Multimodal reasoning in VQA Wang et al. (2022b) create multimodal reasoning by combining the two knowledge graphs of visual-level with extracted objects and concept-level with multimodal information. In contrast to DAS-VQA, we define multimodal reasoning as the choices of paths in the causal graph to understand the multimodal and select a proper strategy to predict the answer.

6 Conclusion

In this study, we proposed DAS-VQA as a novel framework that improves the OOD generalization in the VQA task by promoting multimodal reasoning without any additional human annotations or labels. The experiment results demonstrate that DAS-VQA outperforms the baselines in both IID and OOD cases with real-life images and the medical domain datasets.
7 Acknowledgement

These research results were partly obtained from the commissioned research (No. 225) by National Institute of Information and Communications Technology (NICT), Japan.

References

Figure 6: The strategy awareness VQA from the view of ICM

A The flexibility of DAS-VQA

The flexibility of DAS-VQA is described by two points: the design of the two awareness systems and the choices of NDE. First, technically, these two ASs can be designed as any deep learning architecture that serves the desired responsibility. Second, as mentioned in Section 2.1.1, we have eight forms of NDE, then, adapting to different training objectives of arbitrary multimodal tasks, different NDE is executed. The following are eight equations of the prediction probability $Z_{1-S_1S_2}$ preparing for NDE computations.

$$
Z_{1-000} = z_q + z_v \\
Z_{1-001} = z_q + z_v + z_{AS} \\
Z_{1-010} = z_q + z_v + (z_{v'} + z_{q'}) \\
Z_{1-011} = z_q + z_v + (z_{v'} + z_{q'}) + z_{AS} \\
Z_{1-100} = z_q + z_v + z_{MF} \\
Z_{1-101} = z_q + z_v + z_{MF} + z_{AS} \\
Z_{1-110} = z_q + z_v + z_{MF} + (z_{v'} + z_{q'}) \\
Z_{1-111} = z_q + z_v + z_{MF} + (z_{v'} + z_{q'}) + z_{AS}
$$

B Implementation details

B.1 Designs of awareness systems

In this study, we utilize the independent causal mechanisms (ICM) structure (Schölkopf et al., 2021) for both components. The main idea of the ICM is to decompose the original design into smaller parts that are learned independently. We manipulate one causal mechanism for each question’s purpose and each strategy. In this work, all of the guiding models and mechanisms are designed as multilayer perceptron (MLP).

The general flow of ICM is illustrated in Figure 6, which contains a list of strategy models and a guiding model.

Figure 7: The causal impact of strategy selection. The Prediction values indicate results from the selected strategy by AS_2, while the Random values represent a random selection of strategies, collected from VQA-CPv2.

The key objective of ICM is to train the strategy models independently, with means the weight-updating process of this model does not affect other models’ weight. The role of the guiding model is to select k strategies to be activated by a k-hot Gumbel max. Afterward, only the selected strategy would contribute to the output of ICM.

B.2 Monolithic models design

DAS-VQA utilizes the following Monolithic models: W_v, W_q, W_{MF}. In this work, we use MLP for these models.

C Evaluation method

Our evaluation methods follow the previous works (Niu et al., 2021; Binh D. Nguyen, 2019). Overall, we evaluate the predicted answer by word-by-word accuracy.

In addition, for VQA-CPv2 and VQAv2, we also report the accuracy of Yes/No and Numbers related questions, the rest of the question types denoted as Other type. While for PathVQA and VQA-RAD, we report the overall score only.

D Further discussion on qualitative results

The Causal Impact of Strategy Selection The causal impact of strategy selection is depicted in Figure 7. DAS-VQA proves the ability to learn a list of strategies independently and gain a significant distance in roles of each strategy by the drop of performance when just randomly selecting a strategy.