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Abstract
Bi-encoder architectures for distantly-supervised relation
extraction aim to use complementary information from
texts and knowledge graphs (KG). However, current ar-
chitectures suffer drawbacks. They either do not share
information between text and KG encoders at all, or, in
case of models with KG-to-text attention, only share infor-
mation in one direction. Here, we introduce cross-stitch
bi-encoders, which allow bi-directional information shar-
ing between text and KG encoders via a cross-stitch mech-
anism. Cross-stitching enables sharing and updating rep-
resentations between the two encoders, with the degree of
sharing controlled by cross-attention gates. Experiments
on relation extraction benchmarks show that bi-directional
sharing between encoders yields strong improvements.1）

1 Introduction
Identifying semantic relations between textual mentions

of entities is a key task for information extraction systems.
For example, consider the sentence:

(1) Aspirin is widely used for short-term treatment of
pain, fever or colds.

Assuming an inventory of relations such as may_treat
or founded_by, a relation extraction (RE) system
should recognize the predicate in (1) as an instance of a
may_treat relation and extract a knowledge graph (KG)
triple like (Aspirin, may_treat, pain). RE systems are
commonly trained on data obtained via Distant Supervi-
sion (DS) [1]: Given a KG triple, i.e., a pair of entities and
a relation, one assumes that all sentences mentioning both

1） Code and data: www.github.com/cl-tohoku/xbe
∗ Equal contribution

entities express the relation and collects all such sentences
as positive examples. DS allows collecting large amounts
of training data, but its assumption is often violated:

(2) Nursing diagnoses acute pain related to aspirin
use and variants in the radiotherapy group ...

(3) Elon Musk and SpaceX engineers embark on a
historic mission to return NASA astronauts to ...

Sentence (2) and (3) are false positive examples for
may_treat and founded_by relation respectively,
since they are not about a treatment and founding a com-
pany. We refer to false positive examples like (2) and (3)
as noisy sentences.

A common approach for dealing with noisy sentences is
to use the KG as a complementary source of information.
Models taking this approach are typically implemented as
bi-encoders, with one encoder for textual input and one
encoder for KG input. They are trained to rely more on the
text encoder when given informative sentences and more
on the KG encoder when faced with noisy ones [2, 3,
4, 5, 6, 7]. However, current bi-encoder models suffer
from drawbacks. Bi-encoders that encode text and KG
separately and then concatenate each encoder’s output, as
illustrated in Figure 1a and proposed by [7], i.a., cannot
share information between the text encoder and the KG
encoder during encoding. In contrast, Bi-encoders whose
text encoder can attend to the KG encoder’s hidden states,
as illustrated in Figure 1b and proposed by [2, 4, 3], i.a.,
do allow information to flow from the KG encoder to the
text encoder, but not in the opposite direction.

Here, we propose a cross-stitch bi-encoder (XBE, Fig-
ure 1c) that addresses both of these drawbacks by enabling
information sharing between the text encoder and KG en-
coder at arbitrary layers in both directions. Concretely,
we equip a bi-encoder with a cross-stitch component [8]
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Figure 1: Illustration of existing and proposed bi-encoder architectures for distantly-supervised relation extraction. Simple
concatenation of representations (a) does not allow information sharing between text and KG encoders, while KG-to-text
attention (b) only allows sharing in one direction. In contrast, our model (c) allows bi-directional information sharing
between encoders during the encoding process.

to enable bi-directional information sharing and employ
a gating mechanism based on cross-attention [9, 10] to
dynamically control the amount of information shared be-
tween the text encoder and KG encoder. As we will show,
allowing bi-directional information sharing during the en-
coding process, i.e., at intermediate layers, yields consider-
able performance improvements on two relation extraction
benchmarks covering two different domains and achieves
state of the art results on a widely used dataset.(§5.1)

2 Task Formulation
Given a corpus of entity-linked sentences and KG triples

(𝑒𝑘1 , 𝑟
𝑘 , 𝑒𝑘2 ), distant supervision (DS) yields a bag of sen-

tences 𝐵𝑘 = {𝑠𝑘1 , ..., 𝑠
𝑘
𝑛} where each sentence 𝑠𝑘𝑖 mentions

both entities in the pair (𝑒𝑘1 , 𝑒
𝑘
2 ). Given the entity pair

(𝑒𝑘1 , 𝑒
𝑘
2 ) and the sentence bag 𝐵𝑘 , a DS-RE model is trained

to predict the KG relation 𝑟𝑘 .

3 Proposed Model

The cross-stitch bi-encoder (XBE) model is designed
to enable bidirectional information sharing among its two
encoders. As illustrated in Figure 1c, it consists of a text
encoder, a KG encoder, and a cross-stitch component con-
trolled by cross-attention. The following subsections de-
scribe these components.

3.1 Bi-Encoder

To obtain representations of inputs belonging to the two
different modalities in DS-RE, we employ a bi-encoder
architecture consisting of one encoder for textual inputs
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Figure 2: Illustration of the cross-stitch mechanism in com-
bination with cross-attention. See §3.2 for notation.

and one encoder for KG triples. While the cross-stitch
component is agnostic to the type of encoder, we use pre-
trained Transformer models [10] for both text and KG.

3.2 Cross-stitch (X-stitch)

To enable bi-directional information sharing between
the two encoders, we employ a cross-stitch2）mechanism
based on [8]. The mechanism operates by mixing and
updating intermediate representations of the bi-encoder.
We dynamically control the amount of mixing via gates
based on cross-attention (Figure 2). More formally, our
cross-stitch variant operates as follows. Given a sen-

2） For brevity, we use X-stitch in tables and figures.
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tence 𝑠 = (𝑡𝑜𝑘1, ..., 𝑡𝑜𝑘𝑁 ) and corresponding KG triple
𝑡 = (𝑒1, 𝑟, 𝑒2), the text encoder generates sentence repre-
sentations 𝑆𝑖 ∈ ℝ𝑁×𝑑and the KG encoder triple represen-
tations 𝑇𝑖 ∈ ℝ3×𝑑 . We then compute cross-attentions 𝐴

in two directions, triple-to-sentence (𝑡2𝑠) and sentence-to-
triple (𝑠2𝑡), via Equations 1 and 2,

𝐴𝑡2𝑠 = softmaxcolumn ((𝑊 𝑡2𝑠
𝑝 · 𝑇𝑖) · 𝑆𝑖) (1)

𝐴𝑠2𝑡 = softmaxrow(𝑆𝑖 · (𝑊 𝑠2𝑡
𝑝 · 𝑇𝑖)𝑇 ) (2)

where, 𝑊 𝑠2𝑡
𝑝 ∈ ℝ𝑑×𝑑 and 𝑊 𝑡2𝑠

𝑝 ∈ ℝ𝑑×𝑑 denote trainable
linear transformations. The triple-to-sentence attention
𝐴𝑡2𝑠 represents the weight of the embedding of each to-
ken in triple 𝑡 that will be used to update the sentence
representation 𝑆𝑖:

𝑇 𝑡2𝑠𝑖 = 𝑊 𝑡2𝑠
𝑔2 · 𝑅𝑒𝐿𝑈 (𝑊 𝑡2𝑠

𝑔1 · (𝐴𝑡2𝑠 · 𝑇𝑇𝑖 )) (3)

where 𝑊 𝑡2𝑠
𝑔1 ∈ ℝ𝑑

′×𝑑 and 𝑊 𝑡2𝑠
𝑔2 ∈ ℝ𝑑×𝑑

′ are trainable pa-
rameters. Next, a gating mechanism determines the degree
to which the original textual representation 𝑆𝑖 will con-
tribute to the new hidden state of the text encoder:

G𝑡2𝑠
𝑖 = 𝜎(𝑇 𝑡2𝑠𝑖 ) (4)

where, 𝜎 denotes the logistic sigmoid function. We then
update the hidden state of the text encoder at layer 𝑖 by
interpolating its original hidden state 𝑆𝑖 with the triple
representation 𝑇 𝑡2𝑠𝑖 :

𝑆′𝑖 = G𝑡2𝑠
𝑖 · 𝑆𝑖 + 𝜆𝑡 · 𝑇 𝑡2𝑠𝑖 (5)

Information sharing in the sentence-to-triple direction is
performed analogously:

𝑆𝑠2𝑡𝑖 = 𝑊 𝑠2𝑡
𝑔2 · 𝑅𝑒𝐿𝑈 (𝑊 𝑠2𝑡

𝑔1 · ((𝐴𝑠2𝑡 )𝑇 · 𝑆𝑖)) (6)

G𝑠2𝑡
𝑖 = 𝜎(𝑆𝑠2𝑡𝑖 ) (7)

𝑇 ′
𝑖 = G𝑠2𝑡

𝑖 · 𝑇𝑖 + 𝜆𝑠 · 𝑆𝑠2𝑡𝑖 (8)

where 𝜆𝑡 and 𝜆𝑠 are weight hyperparameters. Having
devised a general architecture for text-KG bi-encoders, we
now turn to implementing this architecture for distantly
supervised relation extraction.

4 XBE for Relation Extraction
In distantly supervised relation extraction, the au-

tomatically collected data consists of a set of sen-
tence bags {𝐵1, ..., 𝐵𝑛} and set of corresponding KG
triples {(𝑒1

1, 𝑟
1, 𝑒1

2), ..., (𝑒𝑛1 , 𝑟
𝑛, 𝑒𝑛2 )}. To create train-

ing instances, we mask the relation in the KG triples
{(𝑒1

1, [M], 𝑒1
2), ..., (𝑒𝑛1 , [M], 𝑒𝑛2 )} and provide these masked

triples as input to the KG encoder, while the text encoder re-
ceives one sentence from the corresponding sentence bag.
If the sentence bag contains 𝑘 sentences, we pair each
sentence with the same KG triple and run the bi-encoder
for each pairing, i.e., 𝑘 times, to obtain a sentence bag
representation. During training, the loss of the model is
calculated via Equations 9, 10 and 11,

𝐿 = 𝐿𝑅𝐸 + 𝑤 · 𝐿𝐾𝐺 (9)

𝐿𝑅𝐸 = −
𝑛∑
𝑘=1

|𝐵𝑘 |∑
𝑖=1

log 𝑃(𝑟𝑘 | [s𝑘𝑖 ; rℎ𝑡 ; 𝑥𝑒𝑘1 ; 𝑥𝑒𝑘2 ]) (10)

𝐿𝐾𝐺 = −
𝑛∑
𝑘=1

log 𝑔((𝑒𝑘1 , [M], 𝑒𝑘2 )) (11)

where 𝑤 ∈ (0, 1] is a weight hyperparameter, 𝑃(𝑥) is the
predicted probability of the target relation over a set of pre-
defined relations, ; denotes vector concatenation, rℎ𝑡 is an
additional KG feature vector obtained from a pre-trained
KG completion model such as TransE [11], 𝑥𝑒𝑘 is entity
embedding from the KG encoder, 𝐿𝐾𝐺 is the loss of KG
relation prediction and 𝑔(𝑥) outputs the predicted probabil-
ity of the masked KG token based on its embedding from
the KG encoder. During inference, we follow [7] and use
the mean of sentence embeddings as the bag embedding:

𝑃(𝑟𝑘 |𝐵𝑘) = (
|𝐵𝑘 |∑
𝑖=1

𝑃(𝑟𝑘 | [s𝑘𝑖 ; rℎ𝑡 ; 𝑥𝑒𝑘1 ; 𝑥𝑒𝑘2 ]))/|𝐵
𝑘 | (12)

5 Experiments

Please see Appendix (§A.1) for details on Data and Set-
tings and (§A.2) on Baseline Models.

5.1 Results

The Precision-Recall (PR) curves of each model on Med-
line21 and NYT10 datasets are shown in Figure 3 and Fig-
ure 4, respectively. We make two main observations: (1)
Among the compared models, BRE+KA and BRE+CE,
are strong baselines because they significantly outperform
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Figure 3: PR curves on Medline21.
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Figure 4: PR curves on NYT10.

Medline21 NYT10

Model AUC P@0.3k P@0.5k P@1k P@2k AUC P@0.1k P@0.2k P@0.3k P@0.5k P@1k P@2k

PCNN+ATT 17.8∗ 48.3∗ 43.2∗ 34.3∗ 25.2∗ 34.1† 73.0† 68.0† 67.0† 63.6† 53.3† 40.0†

PCNN+HATT - - - - - 42.0‡ 81.0‡ 79.5‡ 75.7‡ 68.0‡ 58.6‡ 42.1‡

RESIDE - - - - - 41.5† 81.8† 75.4† 74.3† 69.7† 59.3† 45.0†

DISTRE - - - - - 42.2† 68.0† 67.0† 65.3† 65.0† 60.2† 47.9†

JointE 26.3★ 70.0★ 61.4★ 46.4★ 30.0★ 38.5★ 74.0★ 71.5★ 69.0★ 65.4★ 55.9★ 43.6★

RELE 25.6★ 78.7★ 66.8★ 44.7★ 27.5★ 40.5★ 79.0★ 77.0★ 77.0★ 71.2★ 59.3★ 44.7★

BRE+KA 50.3★ 79.7★ 79.2★ 70.3★ 51.2★ 48.8★ 68.0★ 68.0★ 67.0★ 66.0★ 63.7★ 52.4★

BRE+CE 55.3★ 84.0★ 79.4★ 67.7★ 53.8★ 63.2‡ 92.0‡ 92.0‡ 90.0‡ 88.0‡ 78.7‡ 58.7‡

XBE 61.9 89.3 86.4 76.1 56.1 70.5 99.0 96.0 95.6 94.4 85.8 63.2

Table 1: P@N and AUC on Medline21 and NYT10 datasets (k=1000), where †represents that these results are quoted from
[12], ‡indicates the results using the pre-trained model, ★ indicates the results are obtained by re-running corresponding
codes and ∗ indicates using the OpenNRE [13] implementation.

other state-of-the-art models especially when the recall is
greater than 0.25, demonstrating the benefit of combin-
ing a pre-trained language model (here: BERT) and a KG
for DS-RE. (2) The proposed XBE model outperforms all
baselines and achieves the highest precision over the en-
tire recall range on both datasets. Table 1 further presents
more detailed results in terms of AUC and P@N, which
shows improved performance of XBE in all testing met-
rics. In particular, XBE achieves a new state-of-the-art
on the commonly used NYT10 dataset, indicating that the
proposed model can make better use of the combination of
KG and text for DS-RE. Please see Appendix for Ablation
Study(§A.3).

6 Conclusions and Future Work
We proposed a cross-stitch bi-encoder architecture,

XBE, to leverage the complementary relation between KG

and text for distantly supervised relation extraction. Ex-
perimental results on both Medline21 and NYT10 datasets
prove the robustness of our model because the proposed
model achieves significant and consistent improvement as
compared with strong baselines and achieve a new state-of-
the-art result on the widely used NYT10 dataset. Possible
future work includes a more thorough investigation of how
communication between KG encoder and text encoder in-
fluences the performance, as well as a more complex KG
encoder that can not only handle relation triples, but arbi-
trary KG subgraphs, which could have applications in, e.g.,
multi-hop relation extraction.
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#R #EP #Related EP #Sentence

Medline21 40
100,549 /
21,081

10,936 /
1,804

165,692 /
28,912

NYT10 53
281,270 /
96,678

18,252 /
1,950

522,611 /
172,448

Table 2: Statistics of datasets in this work, where R and EP
stand for the target Relation and Entity Pair, #1/#2 represent
the number of training and testing data respectively.

Hyperparameter Medline21 NYT10
learning rate 3e-5 3e-5
weight decay rate 1e-5 1e-5
Adam epsilon 1-e8 1-e8
warmup steps 500 500
batch size 100 80
𝑤 1.0 0.6
𝜆𝑡 1.0 1.0
𝜆𝑠 1-e4 1-e4
maximum epochs 15 10

Table 3: Hyperparameters used in our proposed XBE
model. The experiments (Medline21) are conducted
on Nvidia Titan X(Pascal) GPU, and the experiments
(NYT10) are conducted on a NVIDIA GeForce GTX 1080
TI GPU.

A Appendix

A.1 Data and Settings

We evaluate our model on the biomedical dataset in-
troduced by [6] (hereafter: Medline21) and the NYT10
dataset [14] Statistics for both datasets are summarized in
Table 2. Medline21 dataset contains 582, 686 KG triples
and NYT10 does 335, 350 triples.

As done by [7], the text encoder (§3) for experiments on
NYT10 is initialized with the pre-trained weights from the
bert-base-uncased variant of BERT [15]. The text
encoder for Medline21 is initialized with BioBERT [16]
and the KG encoder (§3) is pre-trained using each dataset’s
corresponding KG triples, as mentioned above. Hyperpa-
rameters used in our Model are listed in Table 3.

A.2 Baseline Models

To demonstrate the effectiveness of the proposed model,
we compare to the following baselines. Baselines were
selected because they are the closest models in terms of

Medline21 NYT10

Model AUC P@2k AUC P@2k

XBE 61.9 56.1 70.5 63.2

- X-stitch 58.7 53.3 68.3 61.3

- KG enc. 55.7 53.8 61.5 56.9

- text enc. 39.8 41.1 55.9 55.1

Table 4: Performance comparison of XBE with different
ablated components (non-cumulative) on Medline21 and
NYT10 datasets (k=1000).

integrating KG with text for DS-RE and/or because they
achieve competitive or state-of-the-art performance on the
datasets used in our evaluation: JointE [2], which is a
joint model for KG embedding and RE, where the KG em-
bedding is utilized for attention calculation over a sentence
bag, as shown in Figure 1b, RELE [4], which extends
the JointE via entity definitions, BRE+KA [7], which is
a version of the JointE model that integrates BERT, and
BRE+CE [7], which is a BERT and KG embedding based
model, where BERT output and the KG triple embedding
are concatenated as a feature vector for DS-RE, as shown
in Figure 1a.

In addition to the models above, we select the follow-
ing baselines for further comparison: PCNN+ATT [17],
PCNN+HATT [18], RESIDE [19] and DISTRE [12].

A.3 Ablation Study

We ablate the three main model components in order to
assess the contribution to overall performance. Results are
shown in Table 4, where “- X-stitch” is the model without
the cross-stitch mechanism, “- KG enc.” denotes remov-
ing the KG encoder, and “- text enc.” removing the text
encoder. We observe that performance drops for all ab-
lations, indicating that each component is important for
the model when performing DS-RE. While the impact of
ablating the text encoder is by far the largest, removing
the cross-stitch component or the KG encoder results in
performance that is comparable to the performance of the
strongest baseline, BRE+CE, on both datasets. This sug-
gests that these two components, i.e., the KG encoder and
the cross-stitch mechanism allowing sharing of informa-
tion between the text and KG encoder, are what enables
our model to improve over BRE+CE.
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