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a set of four four different pictures with four planes
on them and a suitcases on the ground......

ERF¥rTvav

EMF¥ v 73> |lcanseein this image a bag of a brown color.

b L — 2 0HERR 109 8.2
HEHER 2115 15.91
XRDIEE 20~25 15~19
BLEUZX37 1.267 1.199

two people are looking at the direction of the sky........ two people are standing in the grass together.

1 can also see two man among them a woman and a man
is standing on the ground.

a room filled with lots of furniture..

The woman is holding a bag in her hand. In the background | can see a building and a statue.

4.0 42
7.76 8.15
7~9 ~9
2.552 2.573
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coco _detections.hdf5" 7 & , 2048 T DGR E,
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RT 1601 ZTED AT IV —F W RO
FERLX, 7~9words, 10~14words, 15~19words, 20~
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1)  https://github.com/aimagelab/meshed-memory-transformer
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Algorithm 1 Length-Controllable Caption Generation

Require: ¥ ¥ 7> a ¥ S % Lpg, 1D [MASK]token T
L. T: XD 7 v 77— ME e;: XEHARY
bV, ey HEBHIANR Y P L, e MEHIANRS T
v, f,: G BN, .. 2 FEER, f: FFTEM, LN Layer
Normalization [17], e;mg: BEHRREIH & b — 2 > % X3
3B A RE R AR T PV W,, Wy, XIGS 2 Rl %
d-D ZERNCHT § % 2 D DB A REIR SR TH i ds 1~
Lpion.

1: W}lllfgl: t <Tdo

2 if s; is [MASK] then

3 Xs; =€itews; tep

4 Xry = WeTfe,i +W£[LN(fc,i)vLN(fl,i)] + Cimg

5: pi < LaBERT (xy,,xy,)

6.

7

8

end if
¢ < maxsp;(s; =)
: if ¢; <min( %Lhighs c) then
9: s; «— [MASK]
10: end if
11: t=t+1
12: end while
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Wiz, ZOFEBRREDT, Ny FH A4 X256, 4
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3.2 EERER
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I E { D& B.Box 2 H BRI E Z HUS LT
W3, £/, BnwrL—23F 7Y =2 FEOKE)

2)  https://huggingface.co/bert-base-uncased
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a set of four four different pictures with four planes
on them and a suitcases on the ground.

I can see in this image a bag of a brown color.

two people are looking at the direction of the sky.

I can also see two man among them a woman and a man
is standing on the ground.

two people are standing in the grass together.

The woman is holding a bag in her hand.

a room filled with lots of furniture

In the background | can see a building and a statue.

b L — 2 OETERSR 109 8.2 4.0 42
B EE 21.15 15.91 7.76 8.15
XROEE 20~25 15~19 7~9 7~9
BLEUZRa7 1.267 1.199 2.552 2.573
t=2 | a suitcase of with with of of of. a couple of walking a of a . two people are are a of of. alot of with with of of it.
1=3 | a suitcase of with with of of it a couple of people standing a a together. two people are are a of of together, alotof with with of of it
t=4 | asuitcase is is a of the. a couple of people walking in a together. two people are are a of of together. a large filled with many and and it.
=5 | a suitcase is sitting in the the. a couple of people standing in a together. two people are standing in a of together. a room filled with lots of and
7~9 words | t=6 |asuitcase s sitting on the green. a couple of people standing some some together. two people are standing on the field together. a room filled with lots of and
t=7 | asuitcase is sitting on the green. a couple of people standing by some field. two people are standing on the empty together. 2 room filled with lots of different.
t=8 | a suitcase is sitting on the wooden.. a couple of people standing by some grass. two people are standing in the field together. @ room filled with lots of green..
t=9 | a suitcase is sitting on the ground.. a couple of people standing by some trees. two people are standing in the grass together. a oo filled with lots of furniture.
a suitcase is sitting on the ground outside. a couple of people standing by some trees, two people are standing in the grass together. @ room filled with lots of furniture..
as of of of of of of of of. a couple of are a of of of of of. a peaple of are a of of of of of. aare of with with with with and a a....
a s of of with of of of of the. a people of are a of of of of of. two people of are a of of of of o, a are of with with with with and a a....
a suitcase of with with of of of of of. a peaple of are a of of of of the. two people of are a of of of of the. 2 picture of with with of of and of a
a suitcase of with with of of of of it a couple of a a of of of of of. two people are are a of of of of of. & picture of with with of of and the it
a bunch of four that are are in a a... a couple of people that are a of a the... two people are in a of of of of of... 8 bunch of five that are ara in & &,
a bunch of four that are on on a area.... a couple of people that are a of a the... two people are looking the the of of the area.. 2 bunch of flve that are in 2 a ares.
o d a bunch of different that are in in a other... a couple of people that are a of some some.... two people are looking the the of of the area... a bunch of green that are inin a bullding.
10~14 words
a bunch of animals that are on in the other.. a couple of people that are standing in some some.... two people are looking at the directions of the area.... alot of signs that are on in a bullding...
a bunch of animals that are standing in the dirt. a couple of people that are standing in some grass. two people are looking at the direction of the area alot of signs that are standing in the dirt
a bunch of animals that are standing in the dirt a couple of people that are standing In some grass. ‘two people are looking at the direction on the picture. alot of trees that are standing in the dirt...
a bunch of animals that are sitting in the dirt. a couple of people that are standing in some grass. two people are looking at the directions on the wall, alot of trees that are out in the dirt.
a bunch of animals that are standing in the dirt. a couple of people that are standing in some grass. two people are looking at the directions on the wall alot of trees that are standing in the dirt.
a bunch of animals that are standing n the dirt... a couple of people that are standing in some dit... two people are looking at the signs on the wall... alot of trees that are standing in the dir.
a bunch of animals that are standing in the dir... a couple of people that are standing in some dirt... two people are looking at the signs on the wall... alot of trees that are standing in the dirt
t=2 |ais of of of of of of @ a....... a couple of a a of of of of of....... a couple of a a of of of of of...... aare of with with of with 2 a a.......
t=3 [aareof of ofof of of 2 a... a couple of a a of of of of Of..... a couple of a a of of of of of..... aare of with with of with 2 a......
t=4 |aareof of of of of of a a. a couple of in a of of of of of. a couple of a a of of of of of. aare of with with of with a a a.......
=5 [aareof ofofofofofaa a couple of in a of of of of o. a couple of a a of of of of of. aare of with with of with 2 a......
=6 | aare of of of of of of a the. a couple of are a of of of of . a couple of are a of of of of of. a are of with with of with in a a
t=7 |aare of of of of of of a the. a couple of are a of of of of . a couple of are a of of of of o, a are of with with of with in a a
t=8 | aare of of of of of of a the...... two couple of are a of of of of a....... a couple of are a of of of of of....... a are of with with of with in a .
t=9 |aare of of of of of of a the...... two couple of are a of of in a a....... two couple of are a of of of of the. @ are of with with of of in a the.
=10 | a suitcase of with with of of of a t....... two couple of are a are of of a area...... two couple of are a are of of the area... apicture of with with of of and a it.......
15~19 words |t=11 | a suitcase of of with of of of the it..... two people are are a a of a a area....... two people are are a of of a a area........ a picture of with with of of and the i.
t=12 | a bunch of six that are on in a area. two people are looking the the of of a area. two people are in a of of of of area. a bunch of five that are in a a building...
=13 [ a bunch of green that are sitting in a other two paople are looking at the of of the area, two people are standing together a a lots of them. a bunch of green that are sitting in  bulding......
t=14| a bunch of animals that are sitting in the other. two people are looking at the directions of the area. two people are standing together on a lot of area. abunch of signs that are sitting in a building.
=15 | a bunch of animals that are standing in the it two people are looking at the direction in the area. two people are standing in a a full of land. 2 lot of rees that are standing in the dirt.
=16 | a bunch of animals that are standing in the dir....... two people are looking at the direction of the building....... two people are standing in a a lot of land. alot of trees that are standing in the dirt.
=17 | a bunch of animals that are standing in the dirt...... two people are looking at the direction of the wall...... two people are standing in to a lot of land...... alotof trees that are standing in the dirt.
=18 | a bunch of animals that are standing in the dirt...... two people are looking at the direction of the wall...... two people are standing next to a lot of trees.d..... alotof trees that are standing in the dirt......
=19 | a bunch of animals that are standing in the dirt...... two people are looking at the direction of the sky..... two people are standing next to a lot of trees....... alot of trees that are standing in the dirt.......
=20 | a bunch of animals that are standing in the dirt, two people are looking at the direction of the sky. two people are standing next to a lot of trees. alot of trees that are standing in the dit.......
a view of with with with with and and and and and and and and and and
=2 [aisofof aof of aaaaand and and and and a the the.. aman of a of one one one one one one ane ane one one an the the... | a man of aa of of ane ane ane one one and one one ane one the the.... |
=3 & view of with with with with and and and and and and and and and a the
aisof of a of of aaaaand and and and a a the the. aman of aa of one one one one one one one one one one one the the..... | a man of a a of one one ane one one one one one one one one the the..... |
& view of with with with with and and and and and and and and a on the
as of of a of of with a @ @ and and and and a a the the. aman of 3 of one one one one one one one one one one one the the..... | a man of aa of one one one one one one one one one one one the the..... | "
=5 a view of with with with with and and and and and and and and a on the
ais of of a of of with a 2 a and and and and a a the the.... aman of a of one one one one one one one one one one one the the..... | a man of aa of one on on one one one one on one one in the the.... |
2 photo of with with with with and and and and and and and and and on
=6 | a brown of with four of of with and and and and and and a and on the i..... a man of a a of of one one one one and and one one one in the them..... | a man of a a of of a one one one and and and one one in the the.... o
_ a view of four with with with with with with with and and and one on on
=T |4 view of four with with four with with with a and and and a a on the it..... | a pair of fours in a one one one one one ane one one one on the them..... | aman s in a of aa of of of of of of of of o the them, e them
a set of four different of four a one with and and and and and and on the | a couple of three are in in of with with with with with with with in front of 2 view of a four with with with with with and and and and and and on the
t=8 manis on & of a a of of of with with of thes on the distance.
them. them. it
=0 | a set of four four of four four with with and and and and and and on the | a group of four standing in a a with with with with with a on in front of 2 view of  room with with with with with with and and and and and on the
= amanis on a of a a of of of with with with with one on the distance.
them... them.... ..
10| 2t offour four different with with four it and and and and the one on- | a coupl of thre standing i a of wih with with with with withs in frontof | man stands on a window with with a ofof with with with with one on the | aiew of a uiling with with four and and and and and and and and and
=19 the background..... them. distance.... eit.
2025 words | t=11 | 25t offour four iferent it witt with with with and and and and on | couple of peopl standing on  ofof with with with with of in frontof | a man leans on a window sil  ofwith with wih with with seen on the | a view of a buiding with withfour diferent and and and and and and and
~25 words the ground. them. distance. and the it
1| st of fourfour iferentwith with with with it and and and s st o | couple of poopl standing i a cach with with ith of f ofs i frontof | a man sis o a windove il with  of withwith with withs o the & view of a building with with four different and one one and as one on the
=12/ the ground. them. distance. it
=13 | @ set of four four different with with with with thes and four suitcases on | a couple of people standing next to each other with a of of ofs in front of | a man sitting on a window sill with a of of with with with are on the 2 view of a bulding with with four different and the one and a suitcases on
the ground.... them.... distance.... the background.....
14| @<t offourfourpictures with with hree on the them and four suitcases | a coupleof people standing next 0 each other with a ot of ofs n font of | man sting on  window sill looking front o of area with fours on the | view of a uiling with with our aces on th lft and three browns on
=1%] on the ground..... them.... distance.... the left...
=15 | a set of four four differents with fours on them and four suitcases on the | a couple of people standing next to each other with a of of ofs in front of | a man sitting on a window sill looking at a a window with fours on the | a view of a bulding with with four faces on the left and three browns on
ground. them. distance. the loft.
{1 | ? <t of fourfour diffrent four with fourson them and a sitcases on the @ coupl of poopl standing noxt 0 each other with  of of wits i font of | @ man sting on a window sill lookingat a dstance of with fours on the . view o a building with with our faces on th lft and thre diferent one
=0 eround them. distance. on the left.
a set of four four different four with fours on them and a sultcases on the | a couple of people standing next to each other with a row of green running | a man sitting on a window sill looking at a window window with four sky | view of a bulding with with four planes on the right and three different
ground. in front of them. on the distance. one on the left
a set of four four different pictures with four planes on them and a a couple of people standing next to each other with a bunch of green  man sitting on a window sill looking at a round area with four planes on | a view of a building with with four planes on the right and three different
suitcases on the ground.... running i front of them..... the distance.... one on the left....
=19 | a set of four four different pictures with four planes on them and a a couple of people standing next to each other with a bunch of green a man sitting on a window sill looking at a grassy area with four planes on | a view of a building with with four planes on the right and three different
suitcases on the ground.... running in front of the..... the distance.... directions on the eft...
=0 | @ setoffour four diferent ictures with four planes on them and a a couple of people standing next to each other with a bunch of green hills | a man sitting on a window sill looking at a grassy area with four planes on | a view of a bulding with with four directions on the right and three
~ 27| suitcases on the ground..... in front of them. the distance. different directions on the loft.
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