SAMLE S RTINS R CE (20214F3H)

A Span Extraction Approach for Dialog State Tracking:

A Case Study in Hotel Booking Application

Hongjie Shi
Megagon Labs, Tokyo, Japan, Recruit Co., Ltd.
shi.hongjie@megagon.ai

1 Introduction

Traditional dialog state tracking is often formulated as a
classification problem, where the dialog state is predicted
as a distribution over a closed set of possible slot values
within an ontology [1]. By doing so, the tracked dialog
state which is a summary of current conversation, can be
directly used for backend database querying or API calls
in dialog system applications [2]. For example, a virtual
assistant that helps users to book hotels, may fill a slot
price_range with three possible values — high / low /
intermediate defined by the query parameters of the
backend hotel database. However, this classification
approach of dialog state tracking may have two main
disadvantages. First, the system will not be able to handle
any unseen values beyond the predefined value set. While
building a classifier that covers all possible values will
result in impractical annotation and training cost. Second,
we see that many modern designed databases [3] and
search engine API can take direct natural language input
as the search query. A predefined value set will limit the
user query space and cause the matched results lack of
variety.

To overcome these limitations, in this paper we explore
the possibility of a span-extraction approach for the dialog
state tracking, where the values are no longer constrained
in a predefined set, but can be any string form as appeared
in the dialog. The application of this approach is
illustrated in Figure 1. We formulated our task as a multi-
class multi-span extraction problem, with a goal to
identify all contiguous spans along with its slot type from
current user utterance. In this paper, we performed a
particular case study on hotel booking domain, and set up
12 slot types that cover most common hotel requirement
categories. In our system, the extracted spans (or the slot

— 1593 —

values) are then used as input search queries for different
backend systems. The contribution of this paper is to
initiate a new case study on this span-extraction dialog
state tracking, and propose a simple BERT based
approach for multi-slot multi-span extraction.

What kind of hotel are you looking for? O
ENBRART VBB L T2

A clean hotel directly connected to the
station. The price is 10000 yen or less,

1 preferably close to the airport.

XHhWT, BRERKOFRT L, HET 1
THLLUF, TEREENS BTV,

@ Span extraction
Hotel: clean

Budget: 10000 yen or less E> @

Location: directly connected —
Query :_Q

to the station / close to the
Database /

airport
Search engine

Dialog state

Figure 1: An example of span-extraction based
dialog state tracking for hotel booking dialog system.

2 Related work

Free-form dialog state tracking Considering the
limitation of traditional predefined slot values setup, free-
form dialog state tracking that allow slots to be filled with
any string value, have emerged in recent years. In one task
track of DSTC 8 [2], the authors set up a problem to fill
slots like depart_date with any string value derived from
conversation. Others like [4] proposed to use dynamic
vocabularies to track possible values beyond the
predefined set. However these problems or approaches are
still limited in narrow ranges of slot value form, for
example the value is usually either a specific named entity

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

(movie name, restaurant name), or in a very specific
format (date, time). In contrast, our problem considers a
more wide range of possible value forms and span lengths,
including adjectives, verbs, short phrases or even
sentences.

Span extraction based approach The span extraction
based approaches for dialog state tracking tasks have also
been proposed recently. In the paper [1] the authors
utilized a question answering (QA) model to predict slot
value by directly pointing to the value span within the
conversation. However the conventional QA model they
used can not be directly applied to our multi-span
extraction task, because the model output is restricted to a
single answer span. On the other hand, multi-span QA
models that capture multiple answer spans have also been
proposed recently. In the paper [5] the author applied a
sentence selection approach to identify all sentence-level
spans, and in another paper [6] the authors casted the
multi-span task as a sequence tagging problem. Our
method resembles the latter approach, and we further
extend the model with multi-label classification, as to
extract spans for different slot types at the same time.

3 Dataset

The dialog corpus (Japanese) we used in this paper are the
same corpus as our previous paper [7]. The data are
collected between pairs of crowd workers who played
travel agent and user roles respectively. The data contains
879 dialogs with 24963 agent and 11792 user utterances
in total.

Annotation The span annotations are done for each user
utterance in three steps:
1. Identify all span ranges for each user utterance.
2. Label each continuous span with one of the 12
slot types.
3. Label each span with Negation flag if the span
represents a negation.
The length of span is determined so that each span has
minimal string length that can be used as an independent
hotel search query. The 12 slot types represent the
common categories of the user requirement for the hotels,
as shown in the y-axis label in Figure 2.

— 1594 —

Count of annotated spans for each slot type

Hotel 15 A%
Schedule 2
Location 7.

Guests A%
Food 3+
Budget T 5
Room # &=

Child i

Bath Jil =

Scene ¥ — vV
Service #F—E &
Facility 7%

o

500 1000 1500 2000 2500

Figure 2: Distribution of annotated spans over 12
slot types.

Negation flag The Negation flag is used for a negative
match in the database and it can be overlapped with any
other of the 12 slot types. For example in the following
utterance:

I don’t like a room that is too cluttered.

HED ZHTHLEMBITFATIEDH D £ A,

The span “too cluttered” is labeled with the slot type Room
and the Negation flag simultaneously. In this paper we
treat the Negation flag as one of the class along with 12
slot types, so that our problem can be framed as a multi-
label classification.

Span statistics There are 12244 spans (including
Negation) annotated among 6898 user utterances with
average 1.8 spans for each utterance. The average span
length is 5.3 characters with the shortest contains 1 and
the longest contains 43 characters. The slot distribution of
spans is shown in Figure 2.

4 Experiments

4.1 Models

The BERT based pre-training fine-tuning approach has
achieved great success in almost all types of natural
language processing tasks. In our experiment we also
chose BERT as our start point. We incorporated BERT
with a token classification head on top (a linear layer on
top of the hidden states output), so that the model outputs
a series of token-wise labels. This BERT architecture is

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

also used for other sequence labeling tasks such as
Named-Entity-Recognition [8]. One maodification we
have done to the model is that we replace the output
softmax to the binary sigmoid, so that each token can be
associated with any number of labels. By doing so, we can
train the Negation as one class along with the 12 slot types,
and also do not need to add a dummy ‘Outside/None’ class
for any non-span tokens.

Pre-training We compared two pre-trained BERT in our
experiment. The first model is the one published in paper
[9], which is pre-trained with Japanese wikipedia
containing 18 million sentences. We call this model the
general model. The second one is an in-domain model pre-
trained with 20 million sentences of hotel reviews
extracted from hotel booking site jalan.net. The
pretraining details are described in paper [10]. Both
models have 32k vocabulary built with Juman++' as the
Japanese tokenizer and BPE as the subwork tokenizer.
And both use 12 layers configuration as the original
BERT-base configuration.

4.2 Experimental Setup

We split all user utterances into the training, validation
and test dataset with portions of 70%, 15% and 15%
respectively, where the training set contains 8254 user
utterances and the valid / test set contains 1769 user
utterances. The validation dataset is used for tuning the
learning rate during training: the initial learning rate is set
0.00005 and if the loss for the validation dataset increased
compared to the previous epoch, the learning rate is
decayed by a rate of 0.7. The total training epochs is 7 and
batch size is 32. For the model implementation, we use the
transformers package from Hugging Face'. We also apply
the binary sigmoid instead of softmax in the output layer
for multi-label output, and correspondingly modify the
loss function to binary cross entropy.

Metrics The F-score used for evaluation is calculated
token-wisely as following: If we represent the spans in a
n-token sentence using a vector y = (y1,¥2, -, ¥n) >
where y; is a binary digit with value of 1 if the k-th
token is in the span, 0 otherwise. Then the F1 score is

i https://github.com/ku-nlp/jumanpp

— 1595 —

derived from harmonic mean of precision and recall as:

Precision = o———, Recall = ihy
k=1Yk k=1Yk

where y is the true label and ¥ is the output of the
model. To reduce the impact of the class imbalance, in
evaluation we use the global average over all samples
ignoring slot types (also known as micro-averaged F1).

5 Results

One clear conclusion from the result shown in Table 1 is
that the in-domain BERT model outperforms the general
model as large as almost 10%, and this improvement is
most significant in Recall. If we look at the detail score
for each slot type (Figure 3), a trend can be noticed is that
the slot types with less training data, the more
performance improvement is gained. This is not a
surprising result because intuitively in-domain pre-
training can help downstream fine tuning tasks with prior
in-domain knowledge, and this effect is more dominant
when the number of training instances is limited. This is
also a general observation reported in many other tasks
such as [11] and [12]. One complete example of dialog
with its model output can be found in Appendix Table 3.

Table 1: Overview of performance comparison

General model In-domain model

Precision 0.75 0.81
Recall 0.65 0.77
Micro-F1 0.70 0.79

5.1 Error Analysis

In Table 2 we listed some typical error outputs from both
models. From these examples, we can see that the in-
domain model is relatively better at capturing unseen
domain-specific named entity (example #1) and
identifying indirect expression of negation (example #2).
On the other hand the error output tends to be overlong
(example #3) or with wrong slot types (example #4). One
possible reason is that the likely overfitting to the domain
may cause the model too sensitive to certain phrases. And
also, the ambiguous interpretation of slot types may cause

i https://github.com/huggingface/transformers

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

6000 1

4000
0.5
2000
0 0

ScheduleLocation Hotel Budget Guests Food Room Negation Child Service Bath Scene Facility

--<--- General modelF1 —{3— In-domain model F1

of training tokens

Figure 3: Comparison of accuracy for each slot type and Negation. Model details are described in Sect 4.1.

Table 2: Examples of error outputs (errors shown as red underlined).

User utterance General model output In-domain model output
1| Tl EMAFFRESE D7 T v TRV LET, | R - i SVIEE T
I would like to book the plan with the Joshu beef roasted | Food: -- Food: Joshu beef roasted on a

on a ceramic plate. ceramic plate.

2 | WOBDRTIEHLWTT A, ALZCAEV L | fE: Lok iEs Ly | f85: oBkd 83135 Ly

WEOBEUNLET, & ZCAEY LiBE Neg+fE: ZUAED L&
The view of the mountains is great, but it feels a bit too | Hotel: The view of the Hotel: The view of the

small. mountains is great mountains is great
Hotel: too small Neg+Hotel: too small
3| AEFFEL 2 ATEVLET, A 2 A AN ZE2 N
There are 2 people including my wife. Guests: 2 people Guests: 2 people including my
wife

& WinTn
Hotel: quiet

4| FDNRE ANV D,
I like a quiet place.

SEHH: e

Location: quiet

5| MATY,
Within Tokyo.

ST R

Location: Tokyo

SLHh: B
Location: Within Tokyo

a fluctuation in the annotation, such as the word “place” approach for multi-slot multi-span extraction. The

in example #4 can be both interpreted as hotel and
location. However for using as a search query, these errors
seem to be minor because the impact on the search result

will be limited.

Example #5 exposes one limitation of our method, that is
we do not include any dialog context in the model input.
In this example, the user utterance is actually a response
to the agent question “Where are you planning to come
from?”, and therefore should not be interpreted as the
location of the hotel. One way to take the dialog context
into account is to concatenate previous utterances to the
input with additional segment embedding [8]. We include
this improvement in our future work.

6 Conclusion

In this paper we studied a new span-extraction based
dialog state tracking task, and proposed a BERT-based

— 1596 —

proposed method allows a slot to take any form of value
as it is mentioned within the conversation, and therefore
provides a more dynamic dialog state for querying the
backend systems. While in this paper we only focused on
the extraction from current user utterance, we plan to
expand the model to multiple turns, including reference
resolution and slot value update, with a better integration
of dialog context.

Acknowledgements

We would like to thank Prof. Yuki Arase, Mai Aoki (IR-
ALT) and other Megagon team members for their useful
discussions and feedback.

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

References

(1]

(6]

(7]

(8]

Shuyang Gao, et al., "Dialog State Tracking: A
Neural Reading Comprehension Approach,"
Proceedings of the 20th Annual SIGdial Meeting

on Discourse and Dialogue, 2019.

Abhinav Rastogi, et al., "Towards scalable multi-
domain conversational agents: The schema-guided
dialogue dataset," Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. No.
05, 2020.

Yuliang Li, et al., "Subjective Databases,"
Proceedings of the VLDB Endowment, 12(11),
2019.

Rahul Goel, et al., "Hyst: A hybrid approach for
flexible and accurate dialogue state tracking,"
Proc. Interspeech 2019, pp. 1458-1462, 2019.

Ming Zhu, et al., "Question Answering with Long
Multiple-Span Answers," Proceedings of the 2020
Conference on Empirical Methods in Natural

Language Processing: Findings, 2020.
Elad Segal, et al., "A Simple and Effective Model

for Answering Multi-span Questions," arXiv
preprint arXiv:1909.13375, 2019.

Hongjie Shi, "A Sequence-to-sequence Approach
for Numerical Slot-filling Dialog Systems,"
Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
2020.

Jacob Devlin, et al., "Bert: Pre-training of deep
bidirectional transformers for language
understanding," arXiv preprint arXiv:1810.04805,
2018.

SEW TS, FOREE, and BAERIR, "BERT (2
& B BARGERE SURAT O RS REIR) b S PE S
& 25 [AIER AL FE K qm X 2E, 2019.

[10] MEREE A, "HIEk DFEHER D 7= D DRSS = B R

MG ERR o — R ADORER," SFHNPEFE
FH 26 [A]ES K Fen X, 2020.

[11] Takeshi Sakaki, et al., "BERT Pre-trained model
Trained on Large-scale Japanese Social Media
Corpus," https.//github.com/hottolink/hottoSNS-
bert, 2019.

[12] Chi Sun, et al., "How to fine-tune bert for text
classification?," China National Conference on
Chinese Computational Linguistics. Springer,
Cham, 2019.

[13] AREBHAA, "ERIFT E R AFE = — A F
AR FEZA 27]2 TE i X, 2021,

— 1597 — This work is licensed by the author(s) under CC BY 4.0

(https://creativecommons.org/licenses/by/4.0/).

Appendix

Table 3: An example of complete dialog and its corresponding model output. Here we are using the dialog
collected in [13]. The slot values appeared in Agent utterances are not extracted by current model (future
work).

Speaker Utterance In-domain model output
Agent | WH o LoWEH, ZFIAVWEEEELT, SR EHITSVET, ZHEH
IZDEFE LT, BEKO ZHELBHENENWZIZITETTL L DD
User | 7fit2 A& —IC, 3 ATZEHBICITEZWEE->TWET, 11 A3H2 | B 11 A 13 E»L 441
5 4ATE DERBRERL TWOET, Aﬁ:%@zABA

: TEVARER
v ZERKR

Agent | WLZEVFE L7z, ZHLDOITEPIFBETOTFATL X 52?2 KM
TE D VR FNIRIE D T2

User BYETT, e VWWE L7220, Iy RATONEIE D IT T Tz E - | = Bl

Agent | (5. ﬁmﬁf EWETR, 2b5TY &L EOEIATE R YED B A A
L%Lb\f_t TFFET, A—T % Ea—DOBEITWVH 75>Tbct I M2

User %ni%mfim VFOBEWLET, BOEBLE L CEERN S -7 8 | SCHE : iR
u 9 @quﬁ‘

Agent TV, FEVBEOBINATL X 92y b LIEALITHIEFEER VOBIEITND
MR TLEHIMN?

User | #E&EMTE Y ZTITWVERNDWNTT R, THREE/NINDT, SCHE EEARIRE D 5T
Agent TEHITITENVET, BFENNESNWEDZ &ETIR, Iz NEEAA
A UK DTEWET, BHEZBENICRD L, 41ATHRAE A Z L 4<
BEATWEEF 2O TIERONERWETR, WA TLE I N?

User | BL%* 95 CTF, TWMTo THAEVDTTN, HOEIEN TX2V\D CRHTF
BRH EHA, NAREITEMINTHNDEIOTLL I N?

Agent | WLZEVE L7z, TNTIE, AL UHIZNRATT 78 ATEX DT TH
HEBELWZLET, B ARSI U EB NSNS Lo TLEL, B
BT —< = NEEMNE T 2BIELWELELE Y N

User IV, BEWLET, BIRT 58 TR, FiE—ICARTE 3 RIBEN | B2 Ak —RHICART
H DR NDND TR, ERAPIN/E

Agent | ZN T, KRB EOREEBRIVWELET, BEFIIEIETRKAOR
FAZHELTEALWVWTLE Y M

User FENZEOTHN 1T NNETOT, FHHOA =2 —0RHD L8010 F AE N REOFEN T A
T, ThE b, SAF T DITNDNNDTR, Tt O A =2 —
BE: MM X7

Agent | X TIEVETD, £NTIE, BWEEAAS FU2ICLT, BT
BN HHBEICLEL L D N?

User | (3, BAWLET, TN EHRFRNLEDZ LTUELWLOTTNR, P—E R RFRD S
Agent | WL ZEV E L, RFVIRDPLEAY—EA0OH 5 BMHE THRH~NZLE
j_o

Agent | ZHTIE, WERMHMICEIBEELBRLWEZLET,

— 1598 — This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

