
Improve Japanese Input Method by Re-rank Candidate Words

Xinyang Jiang, Weitsung Lin, Gang Qiao, Xiaoliang Xu, Jianmin Wu, Cong Zhang

GBU,Baidu Inc, China, 518052
E-mail: {jiangxinyang, v liweicong, qiaogang01, xuxiaoliang, wujianmin01, zhangcong05}@baidu.com

Abstract

We investigate a Two Stream Encoder model
(TSE) for re-ranking candidate words in Japanese
Input Method, which encodes Hiragana sequences
and word sequences to represent the relationship
between Hiragana sequences, context and candi-
date words. Compared with our current online
model, the transformer-based model can capture
more context information. Two auxiliary lan-
guage model losses are introduced to help model
learning, and the loss weights are dynamically ad-
justed by linear decay.

TSE is empirically effective and achieves a Top-
1 accuracy of 82.3%, which is significantly higher
than the 78.6% of the online model on the testing
set. While there are only 2.43 million of param-
eters and 59.57 second inference time per 10000
reranks, the memory consumption when running
on the mobile phone is only 12MB, let the model
run smoothly on the mobile devices.

1 Introduction

Typing is one of the core methods that users inter-
act with smartphones. Unlike other devices with
keyboard and large screen, typing on mobile de-
vices have more restrictions like limited input but-
tons and small space for showing candidate words.
An intelligent input method to provide better text
suggestions is important to boost typing efficiency
on such devices.

In languages like Japanese and Chinese, there is
an essential text suggestion task: conversion task.
Conversion task is not a common scenario for
Latin based languages which could directly type
on a keyboard, but there are thousands of char-
acters in Japanese and Chinese language. For ex-
ample, in Japanese users type Hiragana sequence,
a type of phonography, and conversion task con-
verts it to a list of target word sequences for users
to select from.

An n-gram language model is used to solve this
problem. However, due to the exponential in-
crease in model size, the n-gram model can only
support up to bi-gram or tri-gram on mobile de-

vices. With this constraint, the n-gram model of-
ten suffers from loss of accuracy because of its lim-
itation on considering length of context. On the
other hand, recently deep-learning based language
models are shown that they can solve such issues
more efficiently.

Although deep-learning based language model
has achieved enormous success, it is still not used
mainly for input method tasks. The major rea-
son is that input methods have to run smoothly
and interactively on mobile devices with limited
resources. Unlike speech recognition or machine
translation services served from online servers, in-
put method applications have to sacrifice accuracy
for execution speed and model size.

In this work, we focus on ranking the target word
list to provide the best fit for users’ original inten-
tion candidates in top 3 to top 6. We customized a
natural language processing (NLP) model, Trans-
former [1], a self-attention mechanism model, to fit
Japanese input method application. By introduc-
ing auxiliary training objectives we have benefit
for learning better encoded representations. Also,
we leverage byte pair encoding (BPE) [2] to seg-
ment and encode input context. BPE not only
helps reduce the length of model input but also
improves execution speed. Therefore, our model
considers longer context distance and achieves a
reasonable execution speed on mobile devices.

To sum up, our contributions are as follows:

• We customized a Two Stream Encoder model
to improve re-rank candidate accuracy in in-
put method.

• The model can run on mobile devices at a
reasonable execution speed.

2 Input Method with

Deep-learning Model

In the input activity, the user first types the Hi-
ragana sequence. Then the possible candidates
show up for the user to choose. Because we don’t
know when the user stops typing and chooses the
candidates, we need to calculate every time a new

― 1518 ―

言語処理学会 第27回年次大会 発表論文集 (2021年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Hiragana character is typed. In this way, a simple
sentence could easily involve multiple candidate
prediction tasks, therefore the most crucial prob-
lem in using deep-learning technology on mobile
devices is often the execution speed. With this
restrick, we select our model task on re-ranking
candidates after a translation from the Hiragana
sequence. In the whole input activity, the user first
types the Hiragana sequence. Then the possible
candidates show up for the user to choose.

Although the language model would be a visible
solution for scoring the candidates with given pre-
vious input words, it is difficult to train a stable
deep-learning language model with shallow model
size. Instead using a simple binary classification
to model candidate scores and train a compact
size model, but it is also hard to converge a useful
model.

Recent NLP models like BERT [3] or GPT [4]
are using pre-training from a larger corpus to learn
well stated model parameters and then fine-tune
on a task with smaller corpus. We leverage this
training strategy on our training. But instead of
two steps training, we join two training objectives
to form a multi-task learning. The intuition be-
hind this setting is that only the binary classifica-
tion objective is hard to guide the model to learn,
but with the language model objective as an auxil-
iary objective, helps the model to converge better.

We use GPT as our model encoder. GPT does
not rely on recurrent mechanisms to follow lan-
guage modeling objectives, instead it uses masks
to achieve this manner. In this way, the calcula-
tion can run in parallel, which improves execution
speed.

3 Method

3.1 BPE

To start the natural language processing, sen-
tences need to be tokenized. For languages like
Japanese or Chinese, there are no natural word
boundaries, such as a space character. It is cru-
cial to have a good tokenization methodology to
start the whole process. Following GPT, it uses
byte pair encoding (BPE) to process English cor-
pus. We use BPE on Japanese texts as a tok-
enizer. BPE largely decreases out-of-vocabulary
words and also reduces sequence length with only
around 50k token size. This is important for
running deep-learning models on mobile devices.
Because in a normal tokenization setting, for a
95% vocabulary coverage, token size easily exceeds
100k. Embedding matrix size often contributes
most parameters in the whole model. Hence, re-

ducing embedding size can reduce model size sig-
nificantly.

The other benefit of BPE is the encoded se-
quence length. Other than using lots of tokens,
using character based tokenization methods is an-
other choice in Japanese and Chinese. In this set-
ting, the token size is often between 5k to 10k
to achieve similar word coverage, but this causes
the encoded sequence length to be longer and too
sparse for the embedding. The BPE balances this
between normal tokenizer and character-based to-
kenizer.

3.2 Two-Stream-Encoded Model

We customize Transformer models to fit the
Japanese input method and the re-rank candi-
dates task. In Japanese input scenarios, users
type a Hiragana sequence and the sequence is con-
verted into words. This is a one to many mapping.
Different words have the same pronunciation and
all can be the potential candidates. There are
two useful data that helps rank candidates: one
is words users have already typed, the other is the
Hiragana sequence users currently typing.

We use two GPT models to encode word se-
quence and Hiragana sequence. The word se-
quence is composed of history words and one can-
didate. These two encoded output logits then con-
catenate into one vector and feed into a binary
classifier. The classifier outputs a scalar ranging
from zero to one to indicate how likely the candi-
date fits for current usage.

Our model consists of two blocks, word encoder
and reading encoder. We call it the Two-stream-
encoded Model (TSE). The word encoder encodes
word sequence and the reading encoder encodes
Hiragana sequence respectively. Instead of using
the identical structure on both encoders, the word
encoder has more parameters than reading en-
coder due to the longer sequence and the larger
unique token size. We append a self-attention
layer to the final layer of word encoder and
use reading encoder output as this self-attention
layer’s query input. We want the word encoder
output to be conditioned on user typing input.
The detail model architecture is in Figure 1.

3.3 Auxiliary Training Objectives

We use point-wise approaches to rank candidates,
which means we give every candidate a score and
use this score to rank. In this setting, a sigmoid
function is a good fit for model output. We train
models with cross-entropy loss between model out-
put and real label, with user-select candidate label
regarded as positive and non user-select candidate

― 1519 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Figure 1: Two-Stream-Encoded model architec-
ture. The word sequence is the concatenation of
history words and one candidate. The binary clas-
sifier output is a scalar which indicates the score
of the candidate.

label as negative. We found that using only this
training objective cannot generalize well on the
test set. To tackle this problem, auxiliary training
objectives, language modeling loss is introduced
to two GPT models in training. This helps mod-
els encoding better output logits for the classifier.
Both GPT encoders have their own language mod-
eling loss and total loss is the sum of three losses
as the following Eq. 1. Alpha and beta here are
the weights for controlling the language model loss
that contribute to total loss.

Lt = α ∗ Lw−encoder + β ∗ Lr−encoder + Lcls (1)

4 Data and Experiment Setting

We train and evaluate the model using a dataset
that was collected from volunteers . In this sec-
tion, we first describe the dataset, and then show
the experiment details.

4.1 Data

The dataset contains about 200 million training
dataset and 0.3 million testing dataset. Data is
collected from volunteers, each input data is as-
sociated with 2 to hundreds of candidate words.
The words selected by the user are taken as posi-
tive samples, and negative samples are randomly
selected from the candidate words not included in
the words selected by the user.

4.2 Experiment Settings

4.2.1 Vocabulary

In order to get better representations from word
encoder and reading encoder, We use BPE to learn
subword vocabularies from Hiragana sequence and
word sequence separately. There are 50k tokens
for word encoder and 8k tokens for reading en-
coder. The Hiragana sequence has a smaller char-
acter space and uses less token size than word en-
coder.

4.2.2 Training Details

We set the batch size and the train steps to 256
and 2 million, warm-up steps set to 10000. The
learning rate is initially set 8e-4 and will be re-
duced to 8e-6 by learning rate linear decay, Adam
is used for optimization and L2 weight decay is set
to 5e-3. We also use linear decay to dynamically
adjust the alpha and beta values in the Eq. 1, the
details are shown in Table 2.

5 Result and Discussion

To evaluate the inference speed, we conduct an
inference procedure on the testing dataset with
batch size of 9. Results are shown in Table 1 and
the average running time of 10000 batches on a
single NVIDIA K40 GPU.

We use Top-1 accuracy as the metric to evaluate
model performance. Meanwhile, we also compare
the model size and the speed of inference, which
are the key factors that run smoothly on mobile
devices. We investigate the effect of model size
and loss weights on the TSE model, the detailed
results and discussions are shown below.

5.1 Effect of model size

We take the online model (no rerank model),
LSTM, and GPT as the baseline model, and com-
pare them with our TSE model, we find that
our TSE model has achieved better performance
shown in the Table 1. LSTM and GPT models
are trained with language model objectives on his-
tory words and user selected candidates. For com-
parison, we set the parameter size similar to the
TSE model. Using language models to evaluate
candidates is a straightforward method. But the
restriction of model size and lack of user input in-
formation cause the accuracy far from our online
model. The TSE model is designed to improve
this problem. It introduces a reading encoder that
can effectively encode the Hiragana sequence and
provides the conversion information between Hi-
ragana sequence and candidate words.

We also compare performance with different
depths and widths on Top-1 accuracy and infer-
ence speed. The TSE-1 model with a wider and
deeper model achieves the best performance, with
a Top-1 accuracy of 82.5%. Reducing the width of
the word encoder by half (TSE-2), the Top-1 ac-
curacy drops to 82.1%, with equivalent model size
and inference speed. Reducing the depth of the
word encoder and reading encoder by half (TSE-
3), the Top-1 accuracy drops to 82.3%, but the
model size and inference speed has also reduced by
0.45M and 33s respectively, the memory consump-

― 1520 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Reading
Encoder

Word
Encoder

#Param
Inference
Time(s)

Top-1
Accuracy

Online - - - - 78.6%

LSTM -
n layer=2;
d lstm=256;
d embed=32

2.42 85.55(1.44x) 69.0%

GPT -

n layer=6;
d attn=128;
d ffn=256;
d embed=32

2.78 117.48(1.97x) 68.8%

TSE-1

n layer=2;
d attn=32;
d ffn=64;
d embed=32

n layer=4;
d attn=128;
d ffn=256;
d embed=32

2.88 93.15(1.56x) 82.5%

TSE-2

n layer=2;
d attn=32;
d ffn=64;
d embed=32

n layer=4;
d attn=64;
d ffn=128;
d embed=32

2.46 93.12(1.55x) 82.1%

TSE-3

n layer=1;
d attn=64;
d ffn=128;
d embed=32

n layer=2;
d attn=128;
d ffn=256;
d embed=32

2.43 59.57(1x) 82.3%

Table 1: The model sizes and inference time for baselines and TSE models. (n layer means the number of the model layer; d lstm
means LSTM hidden size; d embed means the embedding size; d attn means the hidden size of the self-multi-attention block in
Transformer; d ffn means the hidden size of FFN sub-layer in Transformer; #Param means the number of parameters.)

System
Initial value
of alpha and beta
in first 1.5 million

Initial value
of alpha and beta
in last 0.5 million

Decay Method
Top-1
Accuracy

No LML 0.0 0.0 - 55.6%

No LWD
1.0 1.0 - 80.9%

1.0 0.0 - 82.0%

LWD
1.0 0.1 Linear 82.1%

1.0 0.0 Linear 82.3%

Table 2: Ablation studies of loss weights in the TSE-3 Model learning. (No LML means without the auxiliary training objectives;
No LWD means alpha and beta in the Eq.1 remain constant; LWD means alpha and beta will decay from the initial value of the
first 1.5 million to the last 0.5 million during the first 1.5 million.)

tion when running on the mobile phone is only
12MB. We think that re-ranking candidate words
does not require much semantic understanding,
but more to capture the usage of words. There-
fore, the shallow network can still achieve a good
performance, and the speed is faster.

5.2 Effects of loss weights

We investigate the effects of the loss weights (al-
pha and beta in the Eq. 1) on the TSE-3 model
learning. The training period is divided into the
first 1.5 million steps and the last 0.5 million steps,
the two stages using different language model loss
weights respectively. During the training process,

― 1521 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



the alpha and beta in the last 0.5 million will re-
main constant, but in the first 1.5 million may be
dynamically decayed. Note that we set the alpha
and beta to same value during the training period.

Several baselines are proposed including the
TSE-3 model without the auxiliary training objec-
tives (Abbreviated as No LML), the loss weights
decay (Means alpha and beta in the first 1.5 mil-
lion remain constant, abbreviated as No LWD) re-
spectively. The results are illustrated in Table 2
and show the best performance using linear de-
cay in the first 1.5 million steps and removing
the language model losses in the last 0.5 million
steps. The Top-1 accuracy is only 55.6% under the
setting (No LML), which is much lower than the
baseline. This result proves that auxiliary train-
ing objectives are the key for TSE model learning,
they can effectively help the model converge.

Furthermore, we investigate the contributions
of the auxiliary training objectives in the TSE-
3 model learning (No LWD), we set the alpha
and beta to 1.0, and the Top-1 accuracy is 80.9%.
However, if we remove it in the last 0.5 million
training steps, the Top-1 accuracy will increase to
82.0%. This results shows that the effects of the
auxiliary training objectives to the model learn-
ing should be reduced in the last training pe-
riod, enabling the classification task dominating
the model learning.

Finally, we introduce linear decay in the first
1.5 million training steps to dynamically adjust
the loss weights, and the Top-1 accuracy has been
further improved slightly. And it is better to re-
move the language model loss in the last 0.5 mil-
lion training steps than setting the loss weights to
0.1, which the accuracy improves by 0.2. This may
be due to the fact that the model has converged
well in the first 1.5 million steps, removing the lan-
guage model loss in the last 0.5 million steps can
ensure the classification tasks are better trained.

6 Conclusion

In this paper, We empirically investigate a
Transformer-based model for the re-ranking of the
candidate words in input method, finding that it
outperforms the online model, Lstm-based model
and GPT-based model. Transformer-based mod-
els can encode more context compared with the
traditional model which is the N-gram model.
While getting a better performance, we also re-
duce the size of the model to ensure that it can
run smoothly on mobile devices. Finally, we in-
troduce two auxiliary training objectives to help
train the small Transformer-based model, and dy-
namically adjust the loss weights to obtain better

performance.

References

[1] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Åukasz Kaiser, and Illia Polosukhin.
Attention is all you need, 2017.

[2] Rico Sennrich, Barry Haddow, and Alexan-
dra Birch. Neural machine translation of rare
words with subword units, 2015.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for lan-
guage understanding, 2018.

[4] Alec Radford, Karthik Narasimhan, Tim
Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-
training, 2018.

― 1522 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).


