Persuade Me Not!
Towards Understanding Persuasive Yet Fallacious Arguments
Paul Reisert†‡, Kentaro Inui‡†
† RIKEN Center for Advanced Intelligence Project ‡ Tohoku University
paul.reisert@riken.jp inui@tohoku.ac.jp

1 Introduction

In argumentative dialogue such as debates and court cases, audiences are generally influenced by the more persuasive party. However, the more persuasive an argument, the higher chance of it being fallacious (i.e., consisting of logical flaws). For humans, such fallacious arguments can often times be overlooked, as more than 300 fallacy types exist [1].

Consider the following argument on the topic of alcohol consisting of a claim and its supporting evidence:

(1) Claim: All people who drink alcohol are depressed.
Evidence: My friend drank daily and was never happy.

For audiences unfamiliar with the topic, it may appear as though the argument is persuasive. However, for others, it can become readily apparent that the argument is a fallacious hasty generalization with reasoning such as “not all people can be considered depressed given one person’s situation.” It is crucial for humans, and especially machines, to identify such fallacious arguments for any given topic.

In the field of educational research, the usefulness of identifying fallacies as constructive feedback has been emphasized [2, 8, 7, 9]. In the field of NLP, previous works have addressed fallacy identification [4, 5]. However, no prior work has addressed providing specific constructive feedback for fallacious arguments which is increasingly important for applications such as student essays and debates, etc.

Towards enhancing a machine’s ability to recognize fallacious arguments, we aim to create a corpus which will allow us to model fallacious arguments and provide feedback for improving the argument (see Figure 1 for our overall goal). Ideally, a corpus for modeling fallacious arguments with reasoning should be large, contain many fallacious arguments along with their respective reasoning, and should be spanned across multiple topics.

Figure 1: Overall goal of our work. We aim to automatically identify fallacious arguments spread across multiple topics and provide reasoning for improving the original argumentation.

In this work, we report our methodology for collecting fallacious arguments. We first leverage a popular online discussion forum for collecting posts with fallacious arguments and their reasoning. We then conduct an annotation study and a preliminary crowdsourcing experiment for identifying fallacious arguments. We discuss our results and future work towards creating a large-scale corpus of fallacious arguments and their fallacious reasoning.

2 Choosing a suitable collection of data

As aforementioned, a corpus for modeling fallacious arguments with reasoning should be large, contain many fallacious arguments along with their respective reasoning, and should be spanned across multiple topics. In this section, we describe a potential candidate domain for acquiring fallacious arguments and provide details.

2.1 Reddit

Similar to Habernal et al. [6], we utilize the online discussion forum Reddit† as a means for constructing our corpus. Reddit consists of, at the time of

†http://www.reddit.com
Fallacy	DRs
begging the question | 7,719
hasty generalization | 1,850
slippery slope | 114,869
straw man | 39,789

Table 1: Total number of DRs after filtering via exact string match.

3 Annotation study

Given an OP and a DR, we would like to identify i) arguments in the DR which identify a fallacy in the OP, ii) the DR’s fallacious reasoning, and iii) the fallacious argument in the OP. Therefore, we first collect candidate OP/DR pairs and conduct a trial annotation and preliminary crowdsourcing experiment.

3.1 Collecting candidate fallacious OPs

For the purpose of collecting fallacious arguments and their reasoning, we filter OP/DR pairs by 4 common fallacy types [3]. We use an exact string match algorithm for filtering out pairs with one of the fallacies types in the DR. Shown in Table 1 are the fallacy types and DR containing the exact string match of the fallacy type.

For determining whether the pairs are easily annotatable, we first tokenize each OP and DR and determine the average token length. We find that OPs and DRs, on average, have 173 tokens and 138 tokens, respectively. We also find the max number of tokens for OPs and DRs is 867,129 and 57,726, respectively.

3.2 Trial annotation

We conduct a trial annotation for determining the feasibility of collecting fallacious arguments and reasoning on top of Reddit. In preparation of large-
Title: “Regarding the NAP, we're going to have to admit there are flaws in it (re: spanking, abortion, meat-eating).”

OP: […] Raising a child is difficult, and even if one abstains from spanking (which I would support, abstaining from spanking, that is), one time outs (imprisonment), isolation (segregation), taking away toys (theft, if it was a gift), as well as denying icecream to a child (food regulation) and prohibiting them from watching 18+ movies (censorship); we “have” to conclude that we use “force” against children in the process of raising them. Excuses to the contrary are intellectually bankrupt.

 We “have” to be honest with ourselves, that morality “is not objective”. Morality is a tool, and the NAP is an excellent tool best applied to consenting adults. But this tool is “not the most effective tool for all situations.

 Discuss, but hopefully agree. And we don’t have to worry about raging childish arguments, now that throwaway-o is gone (used to love that guy. Sadface).”

DR: > we have to conclude that we use force against children in the process of raising them. This seems to me like a straw man. Those of us saying spanking is bad are not saying all uses of force against children are bad. Guardianship of a child includes some level of authority. Kids are not able to make certain decisions, and so their caretakers must make them for them. A kid might decide brushing their teeth is stupid, but their guardian should be able to force them to do it.

 Maybe I misinterpreted you.

 http://www.mturk.com

Title: Pro-life: if consent to sex means consent to “bearing” a child (no abortion), why doesn’t consent to sex mean consent to “raising” a child (no adoption)?

OP: According to many pro-lifers, when women consent to sex, they thereby consent to (and commit themselves to) bearing any resulting children. And so, in deciding to have sex, these women have in effect “voluntarily waived their right to get an abortion”. (a) Now, I find this pro-life claim utterly baffling: consent to sex is “clearly” different from consenting to anything further, many women deliberately use birth control to “avoid” pregnancy, many women plan on getting an abortion if they should end up pregnant, etc. According to this pro-life claim, it seems, we are supposed to interpret the act of consensual sex itself as involving some sort of mysterious “tacit consent” and “occult commitments” that are not only morally significant, but so overwhelmingly morally important as to “completely override the actual preferences of the woman”. I don’t think actions carry occult commitments, and this all seems like superstition to me. (b) But here’s my question. Let’s suppose for the sake of argument that actions “do” carry occult commitments. Even granting this, we still need a way of telling what those commitments are. Without a method of interpretation, we’re utterly in the dark. For example, a typical pro-lifer might say that the act of consensual sex carries the commitment to bear the child, waiving one’s right to an abortion. But a more radical pro-lifer might say that the act of consensual sex carries the commitment to bear and raise the child, waiving one’s right to an abortion as well as one’s right to put the child up for adoption. My question is: how are we supposed to tell which interpretation is correct, and which occult commitments are (and are not) carried by the act of consensual sex? (c) (“EDIT!”: After three hours, virtually every comment below is “completely missing the point”. Absolutely unbelievable, absolutely pathetic.)

DR: Equating abortion with adoption is really bizarre. It appears you’ve created a straw man.

Figure 3: Examples of positive instances captured by our annotation study. OP fallacious arguments are shown in red, DR arguments indicating a fallacy are shown in green, and the fallacious reasoning is shown in blue. Note that we replace some text with […] in order to reduce the example size.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR indicates fallacy in OP?</td>
<td>24/50 (48.0%)</td>
</tr>
<tr>
<td>DR contains fallacious reasoning?</td>
<td>16/24 (66.7%)</td>
</tr>
<tr>
<td>OP contains fallacious argument?</td>
<td>22/24 (91.7%)</td>
</tr>
</tbody>
</table>

Table 2: Results from our annotation study for 50 OP/DR pairs on the topic of abortion.

The results of the annotation study are shown in Table 2. We observe that roughly half of the DRs indicate a fallacy in the OP. From these DRs, we observe that roughly 67% contain fallacious reasoning. Finally, if the DR indicates a fallacy in the OP, we observed that indeed most of the OPs contain a fallacious argument. Examples of pairs with a fallacious arguments and reasoning are shown in Figure 3.

3.3 Towards collecting fallacious arguments at a large-scale

To test the feasibility of collecting fallacious arguments at a large-scale, we conduct a preliminary crowdsourcing experiment. We use the crowdsourcing platform Amazon Mechanical Turk (AMT®). For worker qualification settings, we target workers who have completed 5,000 or more human intelligence tasks (HITs) and have an approval rating of 99% or more.

We originally set a reward of $0.20 per each completed HIT. Each pair was annotated by 3 crowd-workers using the ieturk interface. Similar to the trial annotation, workers were instructed to first identify whether the DR indicated a fallacy in the OP. If not, they were asked to check the boxes shown in Figure 2. Otherwise, they were asked to highlight the appropriate arguments in the text.

5https://github.com/Varal7/ieturk
6http://www.mturk.com
Because we assume that crowdworkers are not familiar with all fallacy type in our guidelines (for our experiment, we trained them on the hasty generalization type). In total, we annotated 10 pairs by all 3 annotators. The average time for workers to complete one instance was 128 seconds, with a max of 433 seconds and a minimum of 14 seconds.

We report the Krippendorff’s α of our results for the following: i) DR indicates fallacy in OP, ii) DR contains fallacious reasoning, and iii) OP contains fallacious argument as 0.44, 0.30, and 0.24, respectively. We then calculate pairwise string overlap between worker’s highlighted segments using exact, partial (inclusive), and partial (exclusive) matching. The results are shown in Table 3. We observe that in all cases, there was always a partial overlap. In the case of DRs, roughly 70% contained inclusive overlap (e.g., “but hasty generalizations of things are deadly” and “I’m not trying to hate but hasty generalizations of things are deadly”).

<table>
<thead>
<tr>
<th>Segment</th>
<th>Exact</th>
<th>P₁</th>
<th>Pₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td>0.10</td>
<td>0.70</td>
<td>1.0</td>
</tr>
<tr>
<td>DR reasoning</td>
<td>0.00</td>
<td>0.29</td>
<td>1.0</td>
</tr>
<tr>
<td>OP</td>
<td>0.10</td>
<td>0.50</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3: Percentage of agreeing highlighted segments from crowdworkers in terms of exact, partial inclusive (P₁) and partial exclusive (Pₑ) string overlap.

5 Conclusion

In this work, we proposed a method for collecting fallacious arguments and their reasoning. We first leveraged a popular online forum and collected candidate argument pairs. We then filtered the argument pairs by 4 common fallacy types and conducted an annotation study. From our results, we learned that fallacious arguments and their reasoning can be collected. To test the feasibility of annotating such pairs at a large scale, we conducted a preliminary crowdsourcing experiment and found that untrained annotators can reasonably identify fallacious arguments and their reasoning. In our future work, we will expand our argument pairs and conduct a full-fledged crowdsourcing experiment.

References