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1 Introduction

This paper introduces a new technique of deeply an-
alyzing product information in natural text. The
problem of tagging product information regarding
multiple attributes has been long studied as a se-
quence tagging task. The problem draws special at-
tention in E-Commerce applications because tagging
attribute information like product brand names is
particularly useful when product profile information
such as titles and descriptions come in large quan-
tities. Once successfully automated, this task al-
lows various product attributes to be recognized from
free-form text saving significant labor of human an-
notation. The difficulty of this problem primarily
comes from stacking of attribute complexity and ir-
regular text format. In early days, simple and rule-
based heuristics were used such as regular expression
(regex) matching for identifying product brands from
titles. But regex matching suffers from low recall as
unseen brands never get invited to the pre-defined
rules. While naive probabilistic approaches like lin-
ear chain conditional random field (CRF) achieves
better generalization, they lead to unacceptably low
precision. In addition, for official E-Commerce Web
sites, there are downstream tasks including item clas-
sification, purchase behavior analysis and end-user
recommendation, all relying upon accurate product
information.

Figure 1: Screenshot of an Office Desk

With the help of modern named entity recognition
(NER) [1] [2] [7], a substantial amount of related
works [9] [5] have been done on improving quality

of tagging product information with machine learn-
ing. Most noticeably, neural architectures combined
with CRF as an output layer are proved by vari-
ous studies [8] [4] [6] to achieve better overall per-
formance than all the conventional heuristics and
methods in early days. Still these approaches gen-
eralize poorly in open world assumption which im-
poses no limitation on vocabulary of specific prod-
uct aspect, such as a brand name. OpenTag [10]
achieves considerable breakthrough concerning open
world assumption such that emerging brand names
(i.e., absent in training data) can be correctly found
by a model. Nevertheless, all of the aforementioned
works are based on similar problem formulation as
NER, which becomes problematic as product diver-
sity increases. With a random marketplace item as
an example shown in Figure 1, it is commonly re-
quired that all its product attributes are predicted
from its title and description. The attribute values
expected from the example item are listed alongside
its unorganized raw text displayed in Figure 2. For
typical NER problems, individual sequence labeling
models have to be trained for tagging all the 6 high-
lighted spans. This leads to an explosive number
of models when product attributes come in a few
thousands and may constantly grow. In this pa-
per, we propose a BERT-based technique that en-
ables multi-task learning on multiple product at-
tributes. Instead of the standard NER problem set-
ting commonly seen in existing works we reformulate
multi-task learning as a question answering problem,
in which task names (e.g., brand name) are jointly
aligned with product information text at the train-
ing phase. A fine-tuned model is capable of handling
multiple tasks depending on the input task name, or
the “question” it receives.

The rest of this paper makes formal definition of
the problem and introduces the proposed architec-
ture. The experiments first cover comparison be-
tween the proposed approach and NER solutions in-
cluding BERT-CRF and BiLSTM models. Then ex-
periments on a few large data sets are discussed. Our
evaluation metrics indicate that the proposed multi-
task learning model suffers no performance loss and
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works reasonably well on large data sets.

2 Problem Definition

Given a query q representing a task name as the
token list (q1, ..., qm) and context paragraph c as
(c1, ..., cn), we want to find a subset of consecutive
tokens as the answer, a from c. More concretely, this
requires a pair of indices to get predicted, the answer
starting at s and ending at e, i.e., a = cs:e inclusively,
1 ≤ s, e ≤ n and s ≤ e. An example in this paper
is defined as a triplet of (q, c,a) where a is a valid
answer to the query. Two examples are considered
different examples unless all the three elements are
identical. An item is defined as a distinct context
paragraph and briefly notated as c. Two items are
not considered the same if the context paragraphs
do not match, even if they belong to identical prod-
uct. Most commonly, an item contains multiple task
names q and ground truth labels a as is illustrated
by Figure 2. This also implies that the number of
total examples will be much higher than total items
in the real data set.

3 Architecture:
Fine-tuning and Inference

We explore the Bidirectional Encoder Representa-
tions from Transformers (BERT) [3], a recent state-
of-the-art language representation model that is pre-
trained in an unsupervised pattern upon massive
amounts of corpora. A pre-trained BERT model
can be used as a transfer learning checkpoint, which
can further be fine-tuned for more specific down-
stream tasks including classification, NER and ma-
chine reading comprehension (MRC). For the pur-
pose of multi-task learning for product attributes, we
formulate our problem as MRC1. In MRC setting,
the query q is aligned with some item c as initial
input, as is shown in Figure 3.

Consider an example t = (q, c,a) = (q, c, cs:e).
The ground truth of the given example is y =
(s, e). Let the initial feature of the exam-
ple be x, the model input takes the form
x = ([CLS], qm, [SEP], ..., q1, [SEP], c1, ..., cn),x ∈
RL×H′

, where [CLS] is a dummy token indicating the
start of input sequence and D is the input embed-
ding size. Notice that the query tokens are in inverse
order and separated by a separation token. This al-
lows multi-token queries to be better recognized to
improve overall performance verified by experiments
in the next section. BERT encodes input features x

1In this paper, the only type of model involved is BERT-
Base, English, uncased version with 110M parameters.

into an output sequence h(x),h ∈ RL×H where L
is the same as input sequence length and H is the
inner dimension of BERT output. For the down-
stream task of span prediction, a fully connected
output layer is appended, so that the output ten-
sor l = h(x)W + b,W ∈ RH×2, b ∈ R, l ∈ RL×2.
The two columns in l after softmax are considered
starting and ending probabilities of the answer: l1 =
softmax(l[:, 0]) and l2 = softmax(l[:, 1]). Then for
feature x we compute the reduced sum of two cross-
entropy losses L(x) = − 1

2 [Islogl1 + Ielogl2], Is, Ie ∈
RL, where Is and Ie are one-hot vectors at positions
s and e.

Next we define an augmented feature x̃ =
([CLS], [MASK], [SEP], ..., [MASK], [SEP], c1, ..., cn)
by replacing all the query tokens with [MASK] in x.
Feature x̃ goes through the same computation layers
and similarly we have two softmax vectors l̃1 and
l̃2. For the augmented feature, we compute the loss
L̃ only based on the first elements. So let l̃1 = l̃1[0]
and l̃2 = l̃2[0]. We define L̃(x̃) = − 1

2 [logl̃1 + logl̃2].
Finally we maintain a count set for distinct

queries. Let q(t) be the query of example t and Q
be the set of all queries. The query count C(q) is the
number of examples with q in training data.

C(q) =
∥∥{t | q(t) = q, q ∈ Q

}∥∥
Now we are ready to define the final training loss
subject to minimization for the example t.

Ltrain(t) = L(x) +

√
Cmin

C(q)
L̃(x̃) (1)

where Cmin is the lowest count among all the queries:
Cmin = min{C(q)|q ∈ Q}. For given training data,
all C(q) are easily precomputed. The square root
coefficient is designed to impose penalty against ex-
amples with rare queries by increasing the loss on its
augmented features x̃. For examples with frequent
queries, the latter term in (1) tends to be negligi-
ble as the denominator can be a few thousand times
larger than the numerator. Such design proves ben-
eficial for model performance as is discussed in the
next section. For model inference, we simply input a
feature x and after the softmax layer receive l1 and
l2. Hopefully the model predicts a correct answer as
ŷ = (ŝ, ê), where ŝ = argmax

i
l1 and ê = argmax

i
l2.

The final answer in textual format is the span c[ŝ : ê].

4 Experiments

The experiments in this paper are designed to show-
case two facts. First, we prove through a set of
comparative experiments that the proposed tech-
nique is fully compatible with single-task learning
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Figure 2: Aligned Product Information

Figure 3: Model Overview

and does not lose model accuracy compared to pop-
ular sequence labeling techniques including BERT-
CRF and BiLSTM-CRF. Second, experiments on
3 large data sets consisting of examples covering a
range of different product attributes. Examples are
taken from real world item titles/descriptions and
product attribute information from Rakuten’s En-
glish market, rakuten.com.

Five independent tasks are picked out for compar-
ative experiments. Each task corresponds to a sepa-
rate data set in which all examples share a common
query, as is listed in Table 1. We picked up data of
varying sizes to better challenge the models on dif-
ferent scales. For each data set, approximately 10%
random examples are held out as test data. Then
BERT-CRF, BiLSTM-CRF and the proposed multi-
task BERT are trained and evaluated on the same
train/test data. For all BERT based models in com-
parative experiments, the maximum sequence length
is set at 128 with learning rate of 3e−5. Training
batch size is 12 and all training undergoes 2 epochs.

Evaluation outcomes in Table 1 show that the pro-
posed multi-task learning method outperforms both
BERT-CRF and BiLSTM-CRF in terms of both ex-
act match and F1 measure. Here exact match score
refers to percentage of perfectly matched predictions
among all test examples.

As for experiments on large data sets, we focus
on 3 product categories. Similarly we randomly held
out 10% examples from entire data as test sets. For
each data set parallel experiments are conducted on
vanilla BERT2, BERT with query token inversion
without augmented loss and the final approach as is
proposed in Section 3. Table 4 illustrates the effec-
tiveness of the proposed methods albeit minor im-
provement, compared to unmodified vanilla BERT.

5 Conclusion

In this paper, we proposed a novel strategy of fine-
tuning BERT to optimize model accuracy for multi-
task learning of product attributes. Experiments
show that our solution can replace single-task NER
solutions without adversely affecting overall perfor-
mance. Further experiments illustrate its success on
large data sets containing multiple tasks.
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