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Abstract

The task of entity alignment aims at finding corre-
sponding entities that have the same real-world se-
mantics across different knowledge graphs. Recently,
embedding-based methods have been proposed for
this task. Such models assume that a large num-
ber of aligned entities are known. However, in real-
world dataset, such supervised data are difficult to
obtain. To tackle this problem, we explore unsu-
pervised methods by modeling entity alignment as
an optimal transport problem and propose a model
using Gromov-Wasserstein distance. In our exper-
iment, we demonstrate that our model can achieve
good performance.

1 Introduction

Cross-lingual knowledge graphs play a key role in
cross-lingual NLP application. However, it is difficult
to use cross-lingual knowledge graphs (KGs) without
a known corresponding entity-relationship. Finding
aligned entities across different knowledge graphs is
a key technology to utilize cross-lingual KGs.

The supervised knowledge graph alignment task
aims to use information in knowledge graphs them-
selves and the alignment information of some enti-
ties, to obtain unknown aligned entities. In recent
years, embedding-based entity alignment methods
have been proposed [Sun, 2017, Zhu2017,Chen2016,
Sun2018, Trivedi2018]. They use the alignment in-
formation between knowledge graphs to jointly learn
entity embedding and the mapping function between
them so that the learned mapping function can be
applied to discover unknown aligned entities.

These existing entity alignment models assume a
large number of aligned entities are available. How-
ever, it is difficult to obtain aligned entity pairs in
the actual scene. Thus, it is meaningful to discover
corresponding entities from the graph structure. In
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this paper, we seek for the unsupervised setting of
entity alignment task.

We regard the entity alignment task as an optimal
transport (OT) problem and propose a method based
on Gromov-Wasserstein distance [Mémoli2011]. OT
is a general mathematical toolbox used to evaluate
correspondence-based distances and establish map-
pings between probability distributions. It is also
generalized applied in domain adoption applications.
[Alvarez-Melis, 2018] show that OT model demon-
strates its superiority on unsupervised cross-lingual
word alignment.

While OT works well on word alignment, it cannot
be applied directly to multi-channel data like KGs.
Thus, we propose a multi-channel optimal transport
framework for entity alignment. We propose two
models, one assuming the information of aligned re-
lations, and the other assuming no such information.
Due to the limited computational resources, we per-
formed experiments on a subset of the entities in
KGs. The experiments proved the effectiveness with
and without known aligned relations.

2 Proposed method

2.1 Problem Formulation

In this section, we firstly introduce the notation and
problem definition, then describe the proposed multi-
channel optimal transport model for entity alignment
in the multi-relational graph.

Knowledge Graph Alignment In the unsuper-
vised setting of knowledge graph alignment, we con-
sider a source knowledge graph Gs and a target
knowledge graph Gt with their own entities Es, Et
and relations Rs,Rt, respectively, where Es = {esi},
Et = {etj} and Rs = {rsi },Rt = {rtj}, each entity and
relation e, r have their corresponding low dimension
vector e ∈ Rm×1, r ∈ Rn×1. To simplify notation,
we assume that the embedding of all entities and re-
lations share the same dimension d. Thus, source
and target embedding space can be represented by
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{Es ∈ R|Es|×d, Rs ∈ R|Rs|×d}, {Et ∈ R|Et|×d, Rt ∈
R|Rt|×d} respectively.

The problem we need to tackle is finding a map-
ping function from entities in source KG to target
KG:

P : Es → Et (1)

2.2 Multi-channel Optimal Transport
model for entity alignment

In this section, we introduce the method to find the
alignment between the entities of the two graphs
based on Gromov-Wasserstein distance. The whole
algorithm is shown in Alg. 1. The intention and no-
tation of each line are introduced in the following
paragraphs.

To utilize Gromov-Wasserstein distance, we first
need to define the distance function between the en-
tities of Gs and Gt individually. However, due to the
existence of multi-relations in KGs, the distance be-
tween two entities cannot be calculated directly. To
solve the problem, we regard each relation in KGs as
a channel and apply an embedding-based distance.
We firstly embedding graphs into low-dimensional
spaces and acquire entity embedding Es,Et and re-
lation embedding Rs,Rt in line 1. Then, to capture
similarity of entities according to all the relations,
we measure all distance of possible triplets as 3-way
tensors dX , dY in line 2, where dijkX determine the
distance of triplet (ei, rk, ej).

Then, as shown in line 3, we apply distance tensors
to our multi-channel optimal transport model and
obtain π, which π ∈ Γ and Γ contains all possible
admissible couplings between two knowledge graphs.

Γ = {π ∈ R|Es|×|Et|
+ s.t.

s.t.∑
i

πi,j = pi,
s.t.∑
j

πi,j = q}

(2)
where R+ stands for the set of non-negative real
numbers, π is the doubly stochastic matrix measur-
ing the transition probability of entities in two KGs
and p, q are the vectors of probability weights asso-
ciated with each entity. Thus p, q must satisfy the
equation: ∑

i

pi = 1,
∑
j

pj = 1 (3)

Since calculating distance between entities in Gs
and Gt directly are impossible, we need to calcu-
late the cross-graph distance function by measuring
all possible entity pairwise distance D

(
(i, k), (j, l)

)
.

D
(
(i, k), (j, l)

)
are distance between entities i, k j, l

in two graphs, it also can be understood as the cost
of matching entity pair from Es to Et.

Finally, we utilize π acquired by minimizing (4)
defined as below, we can obtain best-matched entity
pairs in line 4. The detail of each step is explained
in the following sections.

π = argmin
π∈Γ

L(dX , dY , π) (4)

where

L(dX , dY , π) =
∑
ij

πij

∑
kl

πkl ·D(dikX , djlY ) (5)

Algorithm 1 Unsupervised entity alignment with
Gromov-wasserstein

Input: Two knowledge graphs
Gs = {Es,Rs},Gt = {Et,Rt}
Output: aligned entity pairs {(esi , etj)}

1: Es,Rs ← KGE(Gs), Et,Rt ← KGE(Gt)
2: dX ← Dist(Es,Rs), dY ← Dist(Et,Rt)
3: π ← argmin

π∈Γ(x,y)

L(dX , dY , π)

4: Obtain {(e1i , e2j )} from π

2.2.1 KGs Embedding Models

We performed our experiments on TransE [Bor-
des2013], one of the most popular KGE models. To
improve the quality of the calculated distance, in-
spired by [Sun, 2019] and [Sun2018], we adopt self-
adversarial negative sampling and loss function sen-
sitive to negative samples.

Self-adversarial negative sampling is a nega-
tive sampling strategy for providing a robust nega-
tive sample during the training process. As shown
in [Sun, 2019], all candidate entities are sampled ac-
cording to the following distribution, α is the hyper-
parameter.

p(h′
i, r, ti|(h, r, t)) =

expα · f(h′, r, t′)∑
i expα · f(h′

i, r, t
′
i)

(6)

Sigmoid loss function [Sun2018] noted that
margin-based loss can not make the scores of posi-
tives triples lower than some of negative ones. Thus,
we adopt sigmoid function to make the scores of neg-
ative samples and positive examples as large as pos-
sible.

L =− log σ(λ− f(h, r, t))

−
n∑

i=1

p(h′
i, r, t

′
i) log σ(f(h

′, r, t′)− λ) (7)
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where λ is the margin value, the negative samples
are generated by replacing the head or tail entity
according to (6).

2.2.2 Distance tensor calculation

After obtaining the embedding of the two knowledge
graphs, we use the distance function defined by KGE
model f(h, r, t) to measure the distances of all pos-
sible triplets.

dX ∈ R|Es|×|Es|×|Rs| (8)

where for any arbitrary (ei, rm, ek), dikmX =
f(ei, rm, ek). The same for dY .

Further, we adopt the ensemble method to elimi-
nate the impact of the initial value on the knowledge
graph embedding and improve robustness. Firstly,
we learn several sets of KG embedding with different
initial values. Then, after calculating the distance
tensors separately, we use the element-wise average
of them as our final distance tensor.

2.2.3 Multi-Channel Optimal Transport

In many cross-knowledge graphs, correspondence be-
tween some relations is available. In order to make
fuller use of the information we have, we utilize the
known aligned relations to help to learn. Also, there
are still many knowledge graphs that do not have
a shared relation. We discuss the situation with
and without aligned relations in the following para-
graphs.

With aligned relations We denote the set of
known aligned relation pairs as A = {(as, at)}, where
as and at stand for same relation. In this setting, we
denote distance function across graph as below:

D
(
(i, k), (j, l)

)
=

∑
(m,n)∈R

||dikmX − djlnY ||
2 (9)

Without aligned relations In the optimization
without any aligned relations, we simply perform a
mean pooling operation on the relation-axis (3rd-
axis) of the distance tensor during optimization.
However, the distance of the all possible triplets can-
not be perfectly modeled according to the score func-
tion f . For some triplets which entities and relations
have low correlation, their distance lacks accuracy
when used as a feature in Gromov-Wasserstein op-
timization. To reduce the impact of such triples, as
shown in (10), we rescale distance tensor dX , dY be-
fore the mean pooling operation.

D
(
(i, k), (j, l)

)
= ||P

(
R(diknX ))

)
−P

(
R(djlY )

)
||2 (10)

where

R(d) = exp(−α ·d), P (d) =
− log(

∑
m dikm)

α
(11)

Finally, for the optimization, we adopt optimiza-
tion method for Gromov-Wasserstein distance pro-
posed by [Peyré2016], which greatly reduce the com-
plexity of the algorithm.

3 Experiments

In this section, we seek to: (1) Introduce experi-
ment setup (2) Perform an experiment on datasets
and evaluate their performance on benchmark entity
alignment task.

3.1 Datasets

In our experiment, we use two types-six datasets to
verify the performance of our models. Three of them
are dummy datasets and others are real dataset.
We obtain the three dummy datasets by segment-
ing FB15K into two sub-graphs with different over-
lap rates. The definition of overlap rate are shown
below:

#overlap rate =
|T1 ∩ T2|
|T1|

=
|T1 ∩ T2|
|T2|

(12)

where T1, T2 are triplets set of source graph and tar-
get graph.

We also use DBP15K - a small version of multi-
lingual KB DBpedia which includes (En ↔ Ja), (En
↔ Fr), (En ↔ Zh) three subsets. The statistics are
summarized in Table 3.1 and Table 3.2.

Due to the limited computation resource, we train
KG embedding on all entities and relation yet only
use embedding of top frequency(1K entities and 500
relations) for alignment. After obtaining transforma-
tion matrix π, we find the best matching entity for
eis in source graph by ejt = argmin

ejt∈Et

πij . Otherwise,

for each run, we report two common metrics, hits at
1/10 (hit@1 and hit@10).

Table 1: Statistics of the Dummy Datasets.

Dataset
FB15k-80 FB15k-50 FB15k-20
src tgt src tgt src tgt

#Entities 14951 14927 14906 14911 14875 14867
#Relations 1289 1262 1260 1235 1242 1210

#Overlap rate 0.8 0.5 0.2
#Shared Triplets 394808 197404 65801
#Shared Entities 14927 14866 14791
#Shared Relations 1262 1199 1146
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Table 2: Statistics of the Cross-lingual KGs.

Dataset
DBP15K(Ja ↔ En) DBP15K(Fr ↔ En) DBP15K(Zh ↔ En)
src tgt src tgt src tgt

#Entities 19814 19780 19661 19993 19388 19572
#Relations 1701 1323 903 1208 1701 1323

#Shared Entities 15000 15000 15000
#Shared Relations 582 75 891

3.2 Results

The evaluation results are presented in Table 3,4.
The algorithm column stands for model settings.
For example, ’TransE/w-rel/single’ means that the
model is using KG embedding trained by TransE, the
second part indicate whether to use aligned relations
obtained by string matching, which ’w-rel’ stands for
using and ’n-rel’ means non-using. Finally, the third
part denotes whether to use ensemble strategy. In
our experiment, we use 6 groups of embedding to
produce ensemble distance tensor.

We report experiment on six models for cross-
lingual datasets as in 4, and only perform experi-
ment on models without aligned relations for dummy
datasets, which are shown in 3. Due to our limita-
tion on the number of alignable entities, there is no
prior research that can participate in comparison,
we only report our own experimental results. From
these evaluation results, we have the following find-
ings:

Table 3: Results on Dummy Dataset.

Algorithm
FB15k-80 FB15k-50 FB15k-20

H@1 H@5 H@10 H@1 H@5 H@10 H@1 H@5 H@10

TransE/n-rel/single 82.94 94.62 97.93 64.86 88.07 93.29 46.76 72.56 82.11
TransE/n-rel/ensemble 90.07 96.38 98.97 74.12 89.35 94.14 55.76 76.95 84.63

Table 4: Results on Cross-Lingual Dataset.

Algorithm
DBP15k(Ja ↔ En) DBP15k(Fr ↔ En) DBP15k(Zh ↔ En)
H@1 H@5 H@10 H@1 H@5 H@10 H@1 H@5 H@10

TransE/n-rel/single 8.70 21.04 34.78 4.97 19.34 25.60 9.06 27.19 39.27
TransE/n-rel/ensemble 8.52 23.13 35.65 1.47 7.37 10.68 10.42 29.61 41.99

TransE/w-rel/single 16.17 35.83 48.52 8.84 24.68 35.17 18.28 42.45 54.68
TransE/w-rel/ensemble 18.78 38.78 51.65 8.84 24.86 32.78 19.64 43.05 55.29

The experiment result shows that our approach
can achieve quite a high accuracy on dummy
datasets. Even with the setting that only 20%
triplets are shared. For the cross-lingual dataset,
even we can not perform a result of supervised
methods, as a trial of the completely unsupervised
method, we achieve an acceptable result. Over-
all, our approach also provides a domain adaption
framework to multi-channel data and reveal that the
aligned channels are critical to alignment.

4 Conclusion

This research explores the unsupervised method on
entity alignment task. We proposed a multi-channel

optimal transport framework for unsupervised do-
main adaption on knowledge graph, which is able to
leverage heuristic information to find corresponding
information across two domain without any super-
vised entities. In practice, we perform an experiment
on six datasets, including three dummy datasets and
three cross-lingual Knowledge graphs and show its
effectiveness. Since the model is limited by computa-
tional performance, in the future, we plan to stretch
our model to more general settings and solve the de-
fect in distinguish similar semantics.
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