
Ranking Model for Improving Input Method Accuracy Based
on LambdaMART

Qiaofei Wang, Ting Li, Gang Qiao, Jianmin Wu, Tianhuang Su

GBU,BaiduInc, China, 518052
E-mail: {wangqiaofei01, liting21, qiaogang01, wujianmin01, sudianhuang}@baidu.com

1 Introduction

In an age of information explosion, mobile devices
gradually become a bridge linking individuals and
the outside world. As [1] reveals, there are 5.11
billion unique mobile users in the world today.
Along with the increasing demand of sharing infor-
mation through mobile devices, people have higher
requirements on the accuracy of the input method,
which is an essential tool for human-computer in-
teraction.

However, the input experience of common in-
put methods is barely satisfactory as the size of
keyboard is generally limited. According to our
statistics, there are about 20% misspelled words in
the process of inputting English in mobile devices
with touch screen. Besides, as the expected word
does not always appear in the first position the
input method displays, additional operations like
scrolling the list of candidate words are required
occasionally, which make the input progress more
inefficient. Therefore, enhancing the accuracy of
error correction and word prediction is of great
importance for input methods.

Figure 1: An example of error correction in Face-
moji keyboard

The noisy channel model [2] is a framework that
can be applied in plenty of scenarios such as ma-
chine translation and spell checkers. These models
are composed of two components: a source model
and a channel model. E. Brill et al. described [4]
an improvement to noisy channel spelling correc-
tion via a more powerful model which works by
learning generic string to string edits, along with
the probabilities of each of these edits. This more
powerful model has a much better performance in

accuracy over previous approaches to noisy chan-
nel spelling correction.

In this paper, we build a ranking model which
not only takes account of the string to string edits
and probabilities, but also introduces the language
model features generated from corpus and GMM
model features that reflect the touch behaviors.
After feature engineering, we trained a Lamb-
daMART model [3] to assign score to the can-
didate words given by the input method. These
words are then re-ranked in accordance with the
scores, which makes the most expected word to
rank top above all the candidate words displayed
to users in the input method. Considering fac-
tors from various aspects comprehensively, the fi-
nal model makes a prominent improvement on the
accuracy of the input method and ameliorates the
input experience.

2 Methods

The model framework is shown in Figure 2, which
can be divided into three parts: input to word
prediction module, feature engineering and Lamb-
daMART model. The input to word prediction
module mainly consists of a base language model
and a noisy channel model. The language model
provides a batch of potential candidates prefixed
with the input character sequence and assigns
a numerical value to each candidate due to the
probability distribution learned from corpus. The
noisy channel model aims to find the intended
words given an input where the letters have been
scrambled in some manner. After gaining all the
possible candidates, certain selected features are
calculated and the LambdaMART model is used
to rank the candidate words according to the fea-
tures.

2.1 Feature Engineering

Feature engineering revealing the relativity of the
input string and candidate words is fundamental
to the application of LambdaMART. Combining
practical results and the domain knowledge of the
data, three types of features are utilized to repre-
sent the underlying structure of each candidate.

― 363 ―

言語処理学会 第26回年次大会 発表論文集 (2020年3月)

Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

Figure 2: The IME ranking framework

2.1.1 Language Model

• N-gram probability:

An n-gram model is a type of probabilistic
language model for predicting the next item
in such a sequence in the form of a Markov
model [9]. A trigram model is trained here to
approximate the probability of a word given
all the previous words P (wn|wn−1 · · ·) by us-
ing only the conditional probability of the
two preceding words P (wn|wn−1wn−2) due to
Markov assumption.

• Transition probabilities based on POS:

A part of speech is a category of words that
have similar grammatical properties[8]. De-
pending on a large part of speech tagged
corpus, we trained a probabilistic language
model for approximating the probability of
a POS given the POS of the two preceding
words. The conditional probabilities that re-
veal the underlying syntactic relevance be-
tween context and candidate words avail the
following LambdaMART ranking.

• Character-level perplexities:

In information theory, perplexity is a mea-
surement of how well a probability distribu-
tion or probability model predicts a sample.
Here a similar perplexity model is made use
of which is based upon character level rather
than word level. Given a certain candidate
C = c1c2 · · · cn, the character-level perplexity
that measures the reasonableness of this word
can be estimated by:

pplchar = exp
− log p(c1c2 · · · cn)

n
(1)

The character-level perplexities fairly reflect
the rationality of candidate words and com-
paratively benefit the performance of the
LambdaMART.

2.1.2 Error Model

There may be candidate words generated from er-
ror correction. For this type of words, error model
estimates the probabilities of error correction.

In [4], an improvement is proposed by learning
generic string to string edits, along with the prob-
abilities of each of these edits. In keeping with
the idea of this model, we select a set S consist-
ing of si, wi string pairs that have relativity high
frequency in corpus, representing spelling errors
si paired with the correct spelling of the word wi.
For each {si, wi} string pairs, we calculated the
transition probabilities P (s → w) .

After gaining the string pairs S and correspond-
ing probabilities from corpus, input string along
with the candidate words which can be find in the
pre-trained pairs set S will be assigned with the
feature representing the probabilities of edits from
input string to candidate words.

2.1.3 GMM: Layout Model

Using mobile devices equipped with touch screen,
incorrect touches occur frequently in the input
progress due to the limited size of screen. For in-
stance, we find it common that the adjacent keys
of the target character are apt to be touched by
mistake and most of these incorrect touches locate
on the border of the objective button. Under the
circumstances, modeling these specific touch posi-
tions properly makes for improving the precision
of correction.

For each input action, a sequence of touch op-
erations that may contain substitution error can
be obtained. To take advantage of these touch in-
formation, we trained GMM (Gaussian Mixture
Model) [7] which can map the input touch se-
quence to the character sequence according to the
touch positions. Utilizing this pre-trained GMM
model, the probabilities of candidate words given
the corresponding input touch sequence can be
calculated. These probabilities that reveal the
pertinence of input behavior and candidate words
are the third type of features for the ranking
model. The process of modeling and feature gen-
erating will be discussed in details below.

For each input action, a series of touch point po-
sitions can be collected. Generally, a touch point
can be represented as v = (x, y), where (x, y) is
the normalized coordinate according to the screen
resolution to eliminate the difference of various de-

― 364 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

Figure 3: The Gaussian model of touch position
on keyboard button

vices. Given a touch point vector v, the probabil-
ity of button bv is denoted as p(bv|v). Figure 3
shows the touch point distribution of a button
from the volunteers’ feedback. According to the
figure, we can make an assumption that the touch
point coordinates of each button follow a two-
dimensional Gaussian distribution. Therefore, for
a given v, the probability that the corresponding
key is c among K keys can be described in GMM
format:

p(c|v) =
φN(v|µc, θc)∑K

j=1 φN(v|µj , θj)
(2)

Given the input touch sequences E=v1v2 · · · vm,
each candidate word is a sequence of characters
C=c1c2 · · · cm. Assuming that each type activ-
ity is independent, we can calculate p(C) for each
candidate:

p(C) =

m∏

i=1

p(ci|vi) (3)

This probability reflecting the latent correlation
between the expected word and the touch points
provides the LambdaMART model with special
information about the input behaviors itself.

2.2 Re-ranking

Aiming at sorting the candidate words opti-
mally, we utilize the LambdaRank algorithm [3]
to present the top one candidate that satisfies
the user’s expectation most. LambdaMART is
the boosted tree version of LambdaRank, which is
based on RankNet. RankNet, LambdaRank, and
LambdaMART have proven to be very successful
algorithms for solving ranking problems [6]. The
algorithm combines the gradient boosting tree and
the following loss function:

C =
∑

{i,j}∈I

|∆NDCGij | log(1 + e)−δ(si−sj) (4)

For the sake of better performance of Lamb-
daMART, we take detailed and well-chosen infor-

mation into account and feed them together to the
LambdaRank model to learn an appropriate rank-
ing for the input-candidate pairs. The valuable in-
formation includes language model features, error-
correction features and GMM model features. Ac-
quiring the underlying patterns of these informa-
tion, LambdaMART assigns a specific score for
each input-candidate pair, which is regarded as
the basis of ordering. The top one word above
the ranking result for the k candidate texts will
be considered as the most possible one the user
would like to type.

In order to construct the training dataset, in-
put behaviors are collected from volunteers’ input
log, which mainly consist of three parts: the ex-
pected word of per input behavior, the sequence
of input characters and the corresponding coor-
dinates of each touch point. For each entry of
input behavior, k candidate words can be gener-
ated from the language model and the noisy chan-
nel model. Associating each candidate word with
the corresponding input behaviors, features can
be extracted for k candidates and then k pieces of
training data are produced. It is worth mention-
ing that in the k candidates only the one match-
ing the expected word gets a score of 1 while
the rest get a score of 0. Hence for each input-
candidate pair (input, candidate), features x can
be generated by uniting the input with the can-
didate as described before, and the corresponding
score y = {1, 0}. After data cleaning and feature
extraction, 800,000 touch sequences are used to
train the LambdaMART model and 100,000 touch
sequences are separated for testing for each lan-
guage.

3 Experimental Result

After training models for two languages respec-
tively, the LambdaMART models are used to as-
sign proper scores to re-rank candidates in test
dataset which contains 100,000 touch sequences
for each language. The ranking results are then
evaluated by NDCG and F0.5 (which weights pre-
cision twice as much as recall) [10, 11]. NDCG
here measures the ranking quality and F0.5 is used
as a comprehensive indicator to fully evaluate the
effect of correction.

As Table 1 and Table 2 show, the LambdaMART
model distinctly enhances the performance of the
input method comparing with the LM + EM
method, which is the base line on the strength
of language model and error model approaches.
For all two languages, there has been a significant
promotion on F0.5 and NDCG is improved to a
certain degree as well.

― 365 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

English Russian
LM+EM 0.8907 0.8659
LM+LambdaMART 0.9049 0.8749

Table 1: The NDCG performance on English and Russian

datasets

English Russian
LM+EM 0.6631 0.6439
LM+LambdaMART 0.7360 0.7515

Table 2: The F0.5 performance on English and Russian

datasets

English Russian
Third-Party 0.8794 0.8361
LM+EM 0.8854 0.8442
LM+LambdaMART 0.8913 0.8555

Table 3: The NDCG performance on English and Russian

datasets without keystroke

English Russian
Third-Party 0.6608 0.6969
LM+EM 0.6544 0.6451
LM+LambdaMART 0.7365 0.7112

Table 4: The F0.5 performance on English and Russian

datasets without keystroke

To compare with the third-party input method,
similar experiments are carried out on third-party
input method for English and Russian. Because
of the inconsistency of the keyboard size and lay-
out in two input methods, the information about
touch points may not be of use upon the third-
party input method. For the sake of fairness,
GMM features are not calculated and utilized in
the feature engineering module in the contrast ex-
periment. As shown in Table 3 and Table 4, the
performance of the LambdaMART model with-
out information of key strokes surpasses the third-
party input method both in NDCG and F0.5.

4 Conclusion

In this paper, we implement a ranking model
based on LambdaMART for improving the input
method accuracy on mobile devices. This ranking
model combines selected features from various as-
pects and re-ranks the candidate words to display
the most expected word. Deployed in Baidu’s in-
put tool on mobile services, this solution has been
proven effective and practical in several languages
such as English and Russian. In future work, we
are going to expand this approach in other lan-
guages like Japanese.

References

[1] Hootsuite & We Are Social (2019). Digital
2019 Global Digital Overview. retrieved from
https://datareportal.com/reports/digital-
2019-global-digital-overview.

[2] Shannon, Claude Elwood. ”A mathematical
theory of communication.” Bell system tech-
nical journal 27.3 (1948): 379-423.

[3] Burges C, From RankNet to LambdaRank
to LambdaMART: An overview[J]. Learning,
2010, 11(23-581): 81.

[4] Brill E, Moore R C. An improved error model
for noisy channel spelling correction, ACL,
2000: 286-293.

[5] Zhang J, Wang X, Feng Y, et al. Fastinput:
Improving input efficiency on mobile devices,
CIKM, 2018: 2057-2065.

[6] Chapelle O, Chang Y. Yahoo! learning to
rank challenge overview[C]//Proceedings of
the learning to rank challenge. 2011: 1-24.

[7] Biernacki C, Celeux G, Govaert G. Assessing
a mixture model for clustering with the inte-
grated completed likelihood[J]. IEEE trans-
actions on pattern analysis and machine in-
telligence, 2000, 22(7): 719-725.

[8] Toutanova K, Klein D, Manning C D, et
al. Feature-rich part-of-speech tagging with
a cyclic dependency network, NAACL, 2003:
173-180.

[9] Chen S F, Goodman J. An empirical study
of smoothing techniques for language model-
ing[J]. Computer Speech & Language, 1999,
13(4): 359-394.

[10] Jarvelin K, Kekalainen J. Cumulated
gain-based evaluation of IR techniques[J].
ACM Transactions on Information Systems
(TOIS), 2002, 20(4): 422-446.

[11] Dahlmeier D, Ng H T. Better evaluation for
grammatical error correction, NAACL, 2012:
568-572.

― 366 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

