
NORMALIZATION OF TRANSLITERATED WORDS USING SEQ2SEQ MODEL WITH

SPELL CHECKER

Byambadorj Zolzaya1, Ryota Nishimura1, Ayush Altangerel2, Norihide Kitaoka3

1Department of Advanced Technology and Science, Tokushima University, Tokushima, Japan
2Department of Information Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia

3Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan

C501947001@tokushima-u.ac.jp, nishimura@is.tokushima-u.ac.jp, a.altangerel@must.edu.mn, kitaoka@tut.jp

1. Introduction

There are two written systems in Mongolian language:

-Classic Mongolian (Uyghur Mongolian)

-Cyrillic

Both of them are used in Mongolia. The Mongolian People's

Republic, as it was called then, first started using a modified

Russian Cyrillic alphabet in 1940 which is still used and the

official written system. Mongolian Cyrillic has 35 characters.

Even though the official written system is the Cyrillic script

before as mentioned, recently many people use Latin alphabets

to write text on social media like Facebook and Twitter. While

writing transliterated text using the Roman script on social

media, there is no rule. Therefore, one word can be written in

different forms. The text processing of social media is one of the

important subjects in NLP. Therefore, in the last years, there has

been a lot of work that focuses on social media. But there is a

lack of research in this area for the Mongolian language and this

is the first study of text normalization for Mongolian.

Text normalization is a pre-processing stage for speech and

language processing applications. At first, text normalization

was to convert words in non-standard forms such as numbers,

dates, acronyms, and abbreviations to standard forms in the

formal text. But later this content was expanded to convert

informal text on social media into formal text. Both source and

target texts are the same languages in the most research work of

noisy text normalizations. In our case, it is a little bit different

and our purpose is to convert noisy transliterated text on social

media to the formal style. In other words, the scripts of source

and target texts are different, Roman and Cyrillic scripts,

respectively.

2. Related works

With the increase of noisy texts, noisy text normalization has

become one of the hot topics in NLP. Aw et al. (2006) used a

phrase-based statistical model for SMS text normalization.

Vilari˜no et al. (2012) used machine translation techniques, a

statistical bilingual dictionary constructed using the IBM-4

model, to normalize SMS texts. Saloot et al. (2014)

implemented an unsupervised normalization system that had

two phases for noisy text normalization: candidate generation

and candidate selection. Six methods such as one-edit distance

lexical generation, phonemically generation, blending the

previous methods, two-edit distance lexical generation,

dictionary translation, and heuristic rules were used to generate

candidates. The language model probability score was used to

select the most appropriate candidate. Kaur and Mann et al.

(2016) implemented a hybrid approach consisted of SMT and

direct mapping to transform a non-standard text into standard

text.

Recently, neural methods for machine translation (Kalchbrenner

and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014) are

also used for text normalization. Ikeda et al. (2016) used a

character level encoder-decoder model for normalizing of

Japanese noisy text. They also built a synthetic database with

predefined rules for data augmentation and compared their

neural network model with a rule-based method and CRF.

Lusetti et al. (2108) normalized Swiss German WhatsApp

messages using a neural network model. They integrated the

language model into the character level neural model and

compared state-of-the-art CSMT with their model. Lourentzou

et al. (2019) used a hybrid seq2seq model which consisted of

two nested encoder and decoder architectures: word and

character level seq2seq models. When an unknown symbol is

encountered when using the word level seq2seq model, the

second character level seq2seq model is used for OOV. Their

hybrid model achieved the best performance so far among

neural models in this related works, but the performance of their

model was lower than some traditional methods. Mager et al.

(2019) proposed an auxiliary task for the sequence-to-sequence

neural architecture novel to the text normalization task, which

improved the base seq2seq model up to 5%. This increase of

performance closed the gap between statistical machine

translation approaches and neural ones for low-resource text

normalization. Mandal and Nanmaran et al. (2018) normalized

noisy transliterated Bengali words in Roman into words in the

native script of Bengali. They used a seq2seq model and

Levenshtein distance algorithm for normalization of the

transliterated words. Tursun and Cakici et al. (2017) normalized

Uyghur text using of Latin alphabets into text using CTA

/Common Turkic alphabets/ and compared the noisy channel

model and neural encoder-decoder model as normalizing

methods. They picked the character-based solution in the

encoder-decoder model but chose the word-based solution for

the noisy channel model. They also used both synthetic and

authentic data. The last two researches are similar to our

research, because transliterated texts written in Latin alphabets

were normalized into canonical form in other scripts.

3. Dataset

In the experiment, two kinds of data sets were prepared. One is

real data consisting of 2200 sentences in Roman script collected

from social media. These sentences were split by word and

canonical forms of the noisy texts were created manually.

When writing a transliterated text on social media, one Latin

letter can be used for many alternatives of Cyrillic letters. It can

happen to especially ‘о’, ‘ө’, ’у’, ‘ү’ Cyrillic letters. Table 1

shows standard transcriptions of these 4 letters, but we almost

don’t use ü, ö transcriptions. Therefore, only 2 Latin letters, ‘u’,

‘o’, are used for these letters as in Table 2.

Table 1. Standard transcriptions of some Cyrillic letters

Cyrillic

letter

Standard

transcription

Cyrillic

letter

Standard

transcription

у u ү ü

о o ө ö

― 1133 ―

言語処理学会 第26回年次大会 発表論文集 (2020年3月)

Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

Table 2. Nonstandard transcriptions of some Cyrillic letters

Latin letter Possible alternatives

u ‘ө’ ,’у’, ‘ү’

o ‘о’, ‘ө’

We collected 7267 canonical words which begin these 4 letters.

Then the words were transliterated correctly in Roman and

added into the training dataset. These are not noisy data. Our

training dataset is the word pairs dataset and statistics of the

training dataset are shown in Table 3. The training dataset was

used all different neural and statistical models.

 Table 3. Statistics of the dataset

Description Input Output

Total words 24073 25023

Total characters 151784 150714

Distinct words 14197 12030

Unique token 30 42

Max length of sequence 21 22

Average length of sequence 7 6

We also prepared test data consisting of 200 sentences collected

from social media as shown in Table 4.

Table 4. Statistics of Test data

Description Test data

Total words 1663

Total characters 9112

Distinct words 1178

Known words in the training data 970 (58%)

Unknown words in the training data 694 (42%)

Two more data corpora were prepared. One is target language

monolingual corpus (Table 5) used to train a language model.

Other is the transliteration corpus (Table 6) used to train a

transliteration model in phrase-based statistical machine

translation. It contains word alignments which are standard

transliterated words in Roman and their respective canonical

words in Cyrillic.

Table 5. Data corpus used to train a Language Model

Description Monolingual text data

Total sentences 24000

Total words 27960

Table 6. Data corpus used to train a Transliteration model

in a SMT model

Description

Standard

transliterated

words

Canonical

Cyrillic

words

Total distinct words 7680 7680

Total characters 62882 57959

Unique token 23 35

4. Method

We implemented different character level neural seq2seq

models and the best achieved method has 2 stages. The

character level seq2seq model was used to normalize noisy

transliterated text in the first stage. In the next stage, we used

the edit distance and a neural language model to correct the

output of the first model.

4.1 Character level sequence to sequence model

We built a character level sequence to sequence model with

attention (Bahdanau et al., 2015) to normalize noisy text (Figure

1). The model learns to map user transliterations to their

canonical form. The sequence to sequence model has encoder

and decoder recurrent neural networks. An encoder processes

the input sequence and compresses the information into context

vectors of a fixed length. A decoder is initialized with context

vectors to generate the transformed output.

Encoder produces hidden states of each element in the input

sequence. Bahdanau’s alignment score function (1) is used to

calculate alignment scores between the previous decoder hidden

state and each of the encoder’s hidden states.

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡, ℎ̅𝑠) = {

ℎ𝑡
𝑇ℎ̅𝑠

ℎ𝑡
𝑇𝑊𝑎ℎ̅𝑠

𝒗𝒂
𝑻𝐭𝐚𝐧𝐡 (𝑾𝒂[𝒉𝒕; �̅�𝒔])

 𝑑𝑜𝑡
 𝑔𝑒𝑛𝑒𝑟𝑎𝑙
 𝑐𝑜𝑛𝑐𝑎𝑡

 (1)

Alignment weights are calculated for each hidden state of

encoder (2).

 𝛼𝑡𝑠 =
exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1,ℎ̅𝑠))

∑ exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1,ℎ̅𝑠′))𝑆
𝑠′=1

 (2)

Each encoder hidden state is multiplied by corresponding

alignment weight and they are summed up to produce

the context vector (3).

 𝑐𝑡 = ∑ 𝛼𝑡𝑠ℎ̅𝑠𝑠 , (3)

for each t. The context vector is concatenated with the previous

decoder output and fed into the Decoder RNN. Then it produces

a new output.

Figure 1. Architecture of Seq2Seq model with attention

The character level neural model used the following

hyperparameters. Both encoder and decoder models used a

single GRU layer with 512 hidden units and the size of the

embedding vector was 250. Adam optimizer with the learning

rate 0.0002 was used and the batch size was 32.

4.2 Edit distance and Neural language model

In the next stage, our algorithm was used to improve the output

of the first model. The algorithm used 2 methods. One is an edit

distance method to generate all possible candidates from

incorrectly normalized words. A dictionary was created by

using the monolingual corpus shown in Table 5 and was used

for candidate generation. We used one and two edits methods to

generate candidates.

Another method is a word-level neural language model shown

in Figure 2 to select the most appropriate candidate. The neural

language model was trained on the monolingual corpus shown

― 1134 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

in Table 5. It learned the probability of occurrence of a word

based on the previous sequence of words used in the text. In

other words, the model computes the probability of occurrence

of sequence as output.

Figure 2. Architecture of Neural language model

Our neural language model has an Embedding layer, a single

LSTM layer, and a Dense layer. The neural model used the

following hyperparameters. Adam optimizer with a learning

rate of 0.001 was used in the model. The model had a single

LSTM layer with 100 hidden units. The size of the embedding

vector was 50. The batch size was 32.

5. Statistical machine translation

In this section, we give a short description of our baseline

model that is based on the phrase-based statistical machine

translation (SMT) implemented by using the Moses tool. The

SMT generates translations based on statistical models

including translation model and language model, whose

parameters are derived from the analysis of bilingual text

corpora. The phrase-based SMT was used for our noisy text

normalization task. The training word pairs dataset and

monolingual corpus shown in Table 3 and Table 5 were used to

train the translation model and the language model,

respectively. The transliteration module has been integrated into

Moses and the module is completely unsupervised and language

independent. Moses builds the transliteration model from the

transliteration corpus. The transliteration corpus shown in Table

6 was used to train the transliteration model. First, we used the

transliteration model to normalize all words in the test data.

Second, the transliteration model was used to normalize only

OOV in the test data when using SMT. These two results were

compared with the output of neural models. Figure 3 shows the

architecture of SMT.

Figure 3. Architecture of SMT

The decoder calculates 𝑝(𝑡|𝑠) and t is the translation result of s.

After using Bayes theorem, the problem can be expressed as

below (4).

𝑝(𝑡|𝑠) ∝ 𝑝(𝑠|𝑡)𝑝(𝑡) (4)

The translation model 𝑝(𝑠|𝑡) is the probability of translation,

and the language model 𝑝(𝑡)is the expression of fluency of the

sentence. The system outputs the best translation �̃� which is

done by picking up the one with the highest probability (5).

�̃� = 𝑎𝑟𝑔 max
𝑒∈𝑒∗

𝑝(𝑡|𝑠) = 𝑎𝑟𝑔 max
𝑒∈𝑒∗

𝑝(𝑠|𝑡)𝑝(𝑡) (5)

6. Experiment

We implemented different character-level neural seq2seq

models and compared the results of all the neural models with

SMT. Table 7 shows the results. The first two models are our

baseline models which are the transliteration model of SMT and

the SMT. The next two models are the original seq2seq model

with and without attention. After that, there are two seq2seq

models with and without attention, but differences from the

previous two models are using the beam search and a pre-

trained neural language model. The bottom four models are the

same and two stages methods. The difference between these

models is that statistical and neural language models were used

in the second stage. All models were trained on the same

training corpus. Two types of accuracies which are word-level

(6) and character-level (7) were calculated to evaluate the

performance of all models.

𝐴𝑐𝑐𝑊𝑜𝑟𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
 (6)

𝐴𝑐𝑐𝐶ℎ𝑎𝑟 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
 (7)

Table 7. WORD and CHARACTER level accuracies of the

test data

Model
WORD level

accuracy

CHARACTER

level accuracy

Baseline model: TM in SMT 80.51% 92.24%

Baseline model: SMT 82.08% 92.97%

M1 77.51% 93.02%

M2 77.87% 93.51%

M1 with BS+NLM 81.05% 92.66%

M2 with BS+NLM 82.20% 93.06%

M1 with ED+SLM 83.34% 92.60%

M2 with ED+SLM 84.72% 93.70%

M1 with ED+NLM 85.08% 93.37%

M2 with ED+NLM 86.04% 94.25%

/ TM – transliteration model, SMT – statistical machine

translation, M1 and M2 – seq2seq model without and with

attention, respectively, BS – beam search, NLM – neural

language model, ED – edit distance, SLM – statistical language

model /

All experiments showed that the performance of the seq2seq

model with attention was better than the seq2seq model without

attention. Also when using only the transliteration model of

SMT to normalize noisy text, output was lower than SMT.

Original seq2seq models achieved the worst and accuracies

were lower than all other models. But when using the seq2seq

model with the beam search and language model, results were

almost the same with baseline. All results of two stages method

(bottom four experiments in Table 7) were higher than the

baselines and other neural models. The best word level and

― 1135 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

character level accuracies, 86.04% and 94.25%, respectively,

were obtained by the seq2seq with attention followed by edit

distance and word-level neural language model.

Tables 8 and 9 give the detailed results of the different models.

SMT achieved the best performance to normalize IV, however,

the performance of our 2 stages method to normalize OOV was

the best in all experiments.

Table 8. WORD level accuracy of IV and OOV in the test data

Model

WORD level accuracy

Accuracy of

IV

Accuracy of

OOV

Baseline model: TM in SMT 93.60% 62.19%

Baseline model: SMT 96.28% 62.19%

M1 95.05% 52.95%
M2 94.94% 53.96%

M1 with BS+NLM 95.36% 61.03%

M2 with BS+NLM 94.74% 64.64%

M1 with ED+SLM 95.56% 66.23%
M2 with ED+SLM 92.15% 70.12%

M1 with ED+NLM 95.56% 70.41%

M2 with ED+NLM 95.25% 73.16%

Table 9. CHARACTER level accuracy of IV and OOV in the test

data

Model

CHARACTER level accuracy

Accuracy of

IV

Accuracy of

OOV

Baseline model: TM in SMT 97.45% 87.58%
Baseline model: SMT 99.00% 87.58%

M1 98.49% 88.14%

M2 98.51% 89.04%

M1 with BS+NLM 98.36% 87.58%

M2 with BS+NLM 98.29% 88.39%

M1 with ED+SLM 98.51% 87.33%

M2 with ED+SLM 98.47% 89.46%

M1 with ED+NLM 98.51% 88.79%

M2 with ED+NLM 98.54% 90.42%

7. Conclusion

We have shown in this paper that different neural models for

normalization of noisy text and compared their performance

with traditional statistical machine-translation method. Our two

stages approach, the seq2seq model for initial normalization

followed by edit distance and neural language model, could

increase the accuracy of SMT and got the accuracy of 86.04%

on the test data. In future work, we would like to increase the

noisy data size and also identify the language of code-mixed

English-Cyrillic sentence to improve noisy text normalization.

8. References

(Cho et al., 2014) Kyunghyun Cho, Bart Van Merrienboer,

Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio, “Learning Phrase

Representations using RNN Encoder-Decoder for Statistical

Machine Translation”, In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing

(EMNLP), pages 1724-1734.

(Sutskever et al., 2014) Ilya Sutskever, Oriol Vinyals, and Quoc

V. Le, “Sequence to sequence learning with neural networks”,

In Proceedings of Conference on Advances in Neural

Information Processing Systems (NIPS), pages 3104-3112.

(Bahdanau et al., 2015) Dzmitry Bahdanau, KyungHyun Cho

and Yoshua Bengio, “Neural machine translation by jointly

learning to align and translate”, published as a conference

paper at ICLR 2015

(Luong et al., 2015) Minh-Thang Luong, Pham Hieu, and

Christopher D. Manning, “Effective approaches to attention-

based neural machine translation”, In Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1412-1421.

(Mandal and Nanmaran et al., 2018) Soumil Mandal and

Karthick Nanmaran , “Normalization of Transliterated Words in

Code-Mixed Data Using Seq2Seq Model & Levenshtein

Distance”, 2018 The 4th Workshop on Noisy User-generated

Text (W-NUT), Nov 1, 2018, Brussels, Belgium

(at EMNLP 2018)

(Ikeda et al., 2016) Taishi Ikeda, Hiroyuki Shindo and Yuji

Matsumoto,” Japanese Text Normalization with Encoder-

Decoder Model”, 2016 The 2nd Workshop on Noisy User-

generated Text (W-NUT), December 11, 2016, Osaka, Japan

(Tursun and Cakici et al., 2017) Osman Tursun and Ruket

Cakici, “Noisy Uyghur Text Normalization”, 2017 The 3rd

Workshop on Noisy User-generated Text (W-NUT), September

7th, Copenhagen (at EMNLP 2017)

(Lourentzou et al., 2019) Ismini Lourentzou, Kabir Manghnani

and ChengXiang Zhai, “Adapting Sequence to Sequence models

for Text Normalization in Social Media”, Association for the

Advancement of Artificial Intelligence, 13th International

AAAI Conference on Web and Social Media, 12 Apr 2019

(Lutti et al., 2018) Massimo Lusetti, Tatyana Ruzsics, Anne

Göhring, Tanja Samardžić and Elisabeth Stark, “Encoder-

Decoder methods for text normalization”, The fifth workshopon

NLP for similar languages, Varieties and Dialects, August 20,

2018

(Mager et al., 2019) Manuel Mager, Monica Jasso Rosales,

Ozlem Cetinoglu and Ivan Meza, “Low-resource neural

character-based noisy text normalization”, Journal of

Intelligent & Fuzzy Systems 36 (2019) 4921-4929, DOI:

10.3233/JIFS-179039, IOS Press

(Saloot et al., 2014) Mohammad Arshi Saloot, Norisma Idris

and AiTi Aw, “Noisy text normalization using an enhanced

language model”, Proceedings of the International Conference

on Artificial Intelligence and Pattern Recognition, Kuala

Lumpur, Malaysia, 2014

(Aw et al., 2006) AiTi Aw, Min Zhang, Juan Xiao and Jian Su,

“A Phrase-based Statistical Model for SMS Text

Normalization”, Proceedings of the COLING/ACL 2006 Main

Conference Poster Sessions, pages 33–40, Sydney, July 2006. c

2006 Association for Computational Linguistics

(Vilari˜no, et al., 2012) Darnes Vilari˜no, David Pinto, Beatriz

Beltr´an, Saul Le´on, Esteban Castillo, and Mireya Tovar, “A

Machine-Translation Method for Normalization of SMS”, J.A.

Carrasco-Ochoa et al. (Eds.): MCPR 2012, LNCS 7329, pp.

293–302, 2012. c Springer-Verlag Berlin Heidelberg 2012

(Kaur and Mann et al., 2016) Harpreet Kaur and Er. Jasdeep

Singh Mann, “Text Normalization using Statistical Machine

Approach”, International Research Journal of Engineering and

Technology (IRJET), 08 Aug -2016

― 1136 ― Copyright(C) 2020 The Association for Natural Language Processing.
All Rights Reserved.

