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Abstract

Semantic Textual Similarity (STS) computes the de-
gree of semantic equivalence between text snippets.
STS is used in various natural language processing
tasks, including detecting redundant information in
texts. Although STS tasks have been widely studied
in the general English domain, there exists very few
resources for STS tasks in the clinical domain. The
methods used for general domain STS tasks might
not work well in the clinical domain because of vari-
ability of natural language expressions, and clinical
domain expressions are different from general do-
main expressions. We present a Clinical BERT-based
model for redundancy detection in clinical texts. Our
experiments show that domain-specific BERT im-
proves performance of the model.

1 Introduction

Electronic Health Records (EHRs) have been widely
adopted to record patient’s medical progress. EHRs
have improved clinical documentation and decision
support, because they provide a coordinated, quick,
and efficient access to patient records. However, this
comes with challenges such as copy-and-paste, use
of templates, and smart phrases [23]. An analysis
of 23,630 notes written by 460 clinicians found that
18% were manually entered; 46% were copied; and
36% were imported [22]. Redundancy reduces the
quality of the EHR data and makes it difficult to
extract relevant information for decision making [24].
Therefore, there is need to minimize redundancy so
as to improve the quality of collected EHR data and
make clinical decision making easier and efficient.

One method for detecting redundant information
is to compute the degree of semantic equivalence
between clinical texts to remove texts which are
highly equivalent [23]. STS is a common task in
general English domain and natural language pro-

Figure 1: Redundant information detection. Given
a set of medical documents, compute the semantic
similarity score and find highly similar sentences.

cessing (NLP) tasks, including text summarization,
question answering, machine translation, informa-
tion retrieval, dialog systems, plagiarism detection,
and query ranking [3]. Although redundant infor-
mation detection is similar to plagiarism detection,
plagiarism detection finds whether texts are similar,
whereas semantic similarity finds the degree of the
similarity.

SemEval (Semantic Evaluation) shared tasks have
been held since 2012 to encourage the development of
automated methods for the STS task [1–4, 6]. How-
ever, these tasks focus on the general English domain
and there exists very few resources for STS tasks in
the clinical domain, ClinicalSTS [23]. Measuring se-
mantic textual similarity is a challenging task due to
variability of natural language expressions and lim-
ited annotated data.

This study focuses on the problem of detecting re-
dundancy in clinical texts. Figure 1 shows redundant
information detection using semantic textual simi-
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larity. We solve a Clinical STS task, i.e., given a
pair of two sentences, the objective is to compute
their degree of semantic similarity on a scale [0, 5].
Zero means that the two sentences are completely
dissimilar, i.e., their meanings do not overlap and 5
means that the sentence pairs are completely simi-
lar, semantically. We adopt a BERT-based model.
BERT [8] set state-of-the-art performance in various
NLP tasks [8, 15, 17]. In the experiments, two BERT
models are used, i.e., BERT and Clinical BERT [5].
BERT is trained on general domain texts, while the
Clinical BERT is trained on clinical notes. The re-
sults show that domain-specific BERT, i.e., Clinical
BERT, improved the performance.

2 Related work

Due to its application across diverse tasks, many ap-
proaches to compute semantic similarity have been
proposed. The existing approaches include; corpus-
based and knowledge-based models [12], machine
learning-based models [7, 19, 21, 26], and neural
networks-based models [9–11, 14, 16, 18, 20].

Mihalcea et al. [12] proposed a method which
uses corpus-based and six knowledge-based measures
for semantic textual similarity. The corpus-based
method measures the degree of similarity between
texts by using information exclusively extracted from
a large corpus while the knowledge-based method
measures the semantic similarity based on informa-
tion extracted from semantic networks.

Chen et al. [7] achieved the best performance in
the ClinicalSTS shared task [23]. They proposed a
method which employs traditional machine learning
and deep learning. Similarly, [21] combined tradi-
tional NLP methods with deep learning. Zhao et
al. [26] used latent semantic analysis to learn vector-
space representations, together with handcrafted fea-
tures. However, traditional NLP approaches, such as
designing handcrafted features, suffer from sparsity
due to lack of large annotated data and language
ambiguity [10].

Kiros et al. [11] proposed skip-thoughts model,
which extends word2vec skip-gram model from word
level to sentence level. They train an encoder-
decoder architecture to predict surrounding sen-
tences. Prijatel et al. [16] proposed a model that uses
various Long Short-Term Memory (LSTM) models
with pre-trained word vectors and sentence embed-
dings. Mueller et al. [14] proposed Siamese LSTM
network for labelled data consisting of sentence pairs
with variable length. Their approach relies on pre-
trained word-embeddings [13] and synonym augmen-
tation.

Tai et al. [20] proposed Tree-LSTMs, which use

syntactic trees to construct sentence representations.
The standard LSTM model determines the hidden
state from the current time-step input and previous
time-step’s hidden state. However, the Tree-LSTM
model determines its hidden state from an input vec-
tor and the hidden states of all child units. The ba-
sic idea is that, by reflecting the sentence syntactic
properties, the tree network can efficiently propagate
more information than the standard sequential archi-
tecture.

BERT [8] provides pretrained models which can
be fine-tuned to produce state-of-the-art results in
various NLP tasks [8, 15, 17]. BERT can be used for
tasks whose input is a sentence pair, such as sentence
pair regression, question answering, and natural lan-
guage inference. It learns distinctive embedding for
the sentences so as to help the model in differentiat-
ing the sentences.

3 Material and Methods

3.1 Dataset

We use two datasets: n2c2/OHNLP dataset and
STS-B dataset. The datasets consist of sentence
pairs annotated on a scale [0,5], where 0 means that
the two sentence pairs are completely dissimilar, i.e.,
their meanings do not overlap, and 5 means that the
sentence pairs are completely similar semantically.
The sizes of the datasets are as shown in Table 1.

3.1.1 n2c2/OHNLP dataset

This dataset was provided in the 2019 n2c2/OHNLP
Clinical Semantic Textual Similarity shared task1

and consists of 1642 sentence pairs. The sentences
are derived from clinical notes obtained from Mayo
Clinic’s clinical data warehouse [23]. Each sentence
pair was annotated by medical experts. The agree-
ment between the annotators had a weighted Cohen’s
Kappa of 0.67.

3.1.2 STS-B dataset

This dataset comprises English data used in the
SemEval STS tasks [6]. It consists of general do-
main English sentences derived from user forums,
image captions, and news headlines. Similar to the
n2c2/OHNLP dataset, the STS-B dataset is scored
by human annotators. This dataset is used for fine-
tuning of our model.

1https://n2c2.dbmi.hms.harvard.edu/track1
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Table 1: Datasets
Dataset Train Development Test

n2c2/OHNLP 1314 328 410
STS-B 5749 1500 1379

Figure 2: Overview of our model

3.2 Method

We adopt BERT [8], one of the state-of-the-art mod-
els in NLP tasks. BERT is a popular approach for
transfer learning and has been proven to be effec-
tive in achieving good accuracy for small datasets
[8, 15, 17]. In transfer learning, model weights are
learned from a large dataset, and fine-tuned for the
target task. In addition to increased precision and
accuracy, transfer learning also reduces the comput-
ing time and memory usage.

Figure 2 shows the overview of our model. Under
sentence pair tasks, the input for BERT consists of
the tokens of the two sentences, separated by a spe-
cial token, [SEP]. The input sequence also has the
[SEP] token at the end. The first token of the input
sequence is the BERT special classification token,
[CLS]. We use BERT to encode the sentence pair,
and pass the final hidden state of the [CLS] token to
a fully connected linear layer to obtain the similarity
score. Since the n2c2/OHNLP dataset is small (1642
sentence pairs), we increase the training instances by
adding the STS-B dataset. During fine-tuning, the
training set contains the n2c2/OHNLP training set
and the STS-B dataset. In the experiments, we use
two BERT pre-trained models: BERT [8] and Clin-
ical BERT [5]. BERT is trained on general domain
texts, whereas the Clinical BERT is trained on clin-
ical notes.

4 Results and Discussion

We evaluate the model performance based on the
Pearson correlation score between the predicted
scores and gold scores on the n2c2/OHNLP test
dataset. We also provided scores for a baseline

Table 2: Test set Pearson correlation
Model Test Correl.
Baseline 0.7804
BERT 0.6923
Clinical BERT 0.8320

model. The baseline model uses traditional NLP
features and word embeddings. The NLP features
were extracted manually and the semantic textual
similarity score computed using an ensemble of five
regression models, i.e., Random Forest, AdaBoost,
Gradient Boosting, XGBoost, and CatBoost. The
NLP features include different types of string simi-
larity measures such as N-gram overlaps [19], word
embeddings (Google2 and PubMed3), machine trans-
lation metrics [25], token-based string similarity, and
sequence-based string similarity [7].

Table 2 shows the results of the models. The
BERT model achieved a Pearson correlation score of
0.6923, whereas the Clinical BERT model achieved
a Pearson correlation score of 0.8320 on the
n2c2/OHNLP test dataset. Note that the baseline
model outperformed the BERT model. As expected,
the Clinical BERT model achieved the best perfor-
mance since it is trained on clinical texts. These
results show that using domain-specific model im-
proves the performance.

Table 3 shows some of the challenges experienced
in the clinical STS task. The system output for
the aspirin-carvedilol and melatonin-eliquis sentence
pairs is similar. These sentence pairs have many
similar words, and the only major difference is the
drug names. The model also assigned a high score
to the ibuprofen-ibuprofen sentence pair. In this sen-
tence pair, the major differences are the drug dosage,
strength, and frequency. It is difficult for the model
to automatically understand these differences, and
even humans without medical knowledge cannot cor-
rectly score the sentences. Therefore, there is need
to use extra explicit medical knowledge to appropri-
ately model and capture such differences.

5 Conclusion

This paper introduced a Clinical BERT-based model
for detecting redundancy in electronic medical
records. Although STS tasks have been widely stud-
ied in the general domain, there exists few resources
in the clinical context. Our experiments showed that
using domain-specific BERT, i.e., Clinical BERT, im-
proved the performance. One limitation of this study

2https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

3https://github.com/ncbi-nlp/BioSentVec
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Table 3: Challenges of clinical STS task
Gold System

Examples score output
Sentence 1: Aspirin [BAYER] 81 mg tablet enteric coated 1 tablet by mouth one time daily. 4 3.47
Sentence 2: Carvedilol [COREG] 25 mg tablet 1 tablet by mouth two times a day.
Sentence 1: Melatonin 3 mg tablet 1-2 tablets by mouth every bedtime as needed. 2.5 3.49
Sentence 2: Eliquis 5 mg tablet 1 tablet by mouth two times a day.
Sentence 1: ibuprofen [MOTRIN] 600 mg tablet 1 tablet by mouth every 6 hours as needed. 0.5 2.63
Sentence 2: ibuprofen [ADVIL] 200 mg tablet 2-3 tablets by mouth every 4 hours as needed.

is that our models compute the semantic similarity
on a sentence level. We plan to extend this study to
build a practical application for clinicians to perform
semantic similarity on whole documents.
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