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1 Introduction

Evidence detection [12] is an important sub-task of
argument mining and finds an application in a wide
range of natural language comprehension tasks like
identifying support and attack relation [3], essay
evaluation [19] and identifying entailment between
sentences[2]. Given a claim and a set of candidate
premises (or evidences), the evidence detection task
identifies the correct link between the given claim
and a candidate premise. Suppose the following ex-
ample:

(1) Claim: Mary is probably pregnant.
Candidate Premise 1: The pregnancy test was
positive.
Candidate Premise 2: Non-taxable items, pro-
motes illegal activity

The task is to identify Candidate Premise 1 as “evi-
dence” and Candidate Premise 2 as “non-evidence”.
For identifying the link between a claim and premise,
a warrant (e.g. “Positive test usually indicates one
is pregnant”) plays an important role. In the past
literature related to argumentation, the use of war-
rants as a way to establish the link between a claim
and premise has been studied extensively [7, 6, 8].
[14, 7] explain the role of warrants as an external ev-
idence, useful in linking the premise and the claim.
The Toulmin model [20] is also widely accepted to
be both well-structured and general, and has been
shown to be useful for identifying relations between
argumentative components in many argumentative
texts. Nevertheless, previous work on evidence de-
tection [12] and argumentative relation identifica-
tion [3, 13, etc.] does not use warrants as a hint
for prediction. Therefore, it remains an open-ended
question as to whether or not warrants can be used
as external knowledge for improving evidence detec-
tion.

This paper explores a new approach for identifying
the link between a claim and premise by using war-
rants as external knowledge useful for evidence detec-
tion. We hypothesize that a set of warrants related to

the claim functions as a hint for claim-premise link
identification. We model a deep architecture that
captures the link between a premise and claim to ex-
plore the applicability of external knowledge in form
of warrants for evidence detection. Our preliminary
experiments demonstrate the effectiveness of using
warrants for the task of evidence detection.

2 Related work

Evidence detection has received wide attention over
the years. [12] devised a method for detecting rele-
vant claims to a given debate topic. [17] created a
benchmark dataset for identifying context-dependent
evidence. However, little work has been done for in-
tegrating warrants as background knowledge for de-
tecting evidence.

The work similar to ours comes under the domain
of argument mining and argument reasoning, in-
cluding both supervised and unsupervised models to
identify relations between sentence pairs. Previous
argumentative relation identification approaches re-
lied more on features extracted from argument com-
ponent, e.g., semantic similarity, word pairs, textual
entailment and so on. However incorporating exter-
nal knowledge to identify such relations is still an un-
touched segment. [13]explore discourse structure fea-
tures for argumentative relation identification. Their
work focuses on context aware argumentative rela-
tion mining that uses features extracted from writ-
ing topics as well as from adjacent context sentences.
Similar to this [11] focuses on macro-level informa-
tion(e.g. argumentative flow) constructed using ar-
gumentative relations in a document. [19] approach
the task of relation identification by identifying ar-
gumentative discourse structures and consider dis-
course markers as misleading or insufficient to iden-
tify argumentative relations, thus introduce their
own feature sets. Also instead of taking sentences as
inputs their inputs vary from clauses to multiple sen-
tences. [15] present first data-driven model of argu-
mentation structure where they optimize argumenta-
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Figure 1: Model Architecture

tion structure globally for the complete sequence of
input components. But they do not account for non-
relevant components appearing in the argumentative
text. All the above approaches work towards identi-
fying either (support/attack) or (support, attack or
none) relation between argumentative text.

In contrast to the work mentioned above, the ap-
proach in this paper focuses on identifying correct
premise(evidence) from a set of evidence in a super-
vised way. For this reason we use warrants to link the
correct pair of claim and evidence. Where warrants
are established to link the support of source towards
target. In addition, the approach tries to incorporate
background knowledge in the form of warrants which
we believe is the first attempt towards this task. Our
idea, correlates to the approach made by [1], where
they try to fill in the gap between claim and premise
by letting annotators write down implicit warrants.
They show that using manually-compiled premises
improves similarity-based claim matching and that
premises generalize to unseen user claims. But they
concluded only with a preliminary analysis due to
large variance in the responses. Also [3] model a
deep learning architecture with identifying relations
of attack and support between natural language ar-
guments in text, by classifying pairs of pieces of text
as attack, support or neither attack nor support re-
lations. We combine the above two approaches par-
tially and use warrants as external knowledge so as
to better identify the correct premise as evidence for
the respective claim using warrants.

3 Model

3.1 Key idea

We assume that warrants are like external knowledge
fragments necessary to link the claim and premise

Figure 2: Instance from Argument Reasoning Com-
prehension task.

better together. We propose a warrant aware model
to better understand relations between C and its P
with the use of these knowledge fragments. Also,
since these warrants are not available exclusively,
we assume that given a claim, we propose to link
together warrants relative to that particular claim.
The reason we do this is, since warrant are rule-like
general statements [21] therefore its applicability is
justified over a wide variety of premises given a claim.
And in such way we can better identify the relations
even when given adversarial instances.

3.2 Architecture

We extend Conneau [5]’s architecture, which is orig-
inally proposed for classifying a pair of sentences.
Figure 1 depicts our architecture used for binary clas-
sification of supporting evidence and non-supporting
evidence detection task L = {Support, Non-relevant}.
Here, (p, c, w) refers to encoded vector representa-
tions of (premise, claim,warrant) in Bm. To get
encode sentences into a fixed-size vector, we use a
bidirectional LSTM [18]. We concatenate the hid-
den states of forward and backward LSTM which
reads the sentence in opposite directions. Before get-
ting the fixed size vector, we apply max pooling [4]
by selecting maximum value over each dimension of
hidden units.

After generating the vector representation of sen-
tences, 3 matching methods are applied to extract
relations between (p, c, w).

1. Concatenation of individual representation
(p, c, w)

2. Element-wise product (p∗w, p∗ c, c∗w, c∗w ∗p)

3. Absolute element-wise difference (|p − c|, |c −
w|, |p− w|)

All the resulting vectors are concatenated and fed
to a softmax classifier, connected by fully connected
neural network. The softmax layer predicts the label
∈ L for the relation between C and P .
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Hyperparameter Value

Dropout 0.5
BiLSTM size 32

Batch size 32
Embedding size 100

Table 1: Hyperparameters used in our experiments.

4 Experiments

4.1 Dataset

For our task, we use Argument Reasoning Compre-
hension Corpus (ARCC), the annotated data pro-
vided by [9] for SemEval task 2018 [10]. This dataset
fits well in our hypothesis of using warrants for claim
and premise evidence detection. An instance of the
dataset is shown in Figure2. Although the initial
task concerning ARC dataset is to identify the cor-
rect warrant given two choices as shown in Figure
2. We use this dataset by extracting all the correct
choice warrants and then modifying the dataset so
as to fit it in our assumption (see Sec 3.1).

The dataset covers various topics such as technol-
ogy, politics, general issues, and so on. In total, we
found that there are 169 different claims and the
dataset is very diverse, small and involves multiple
domains which makes the task challenging. In total,
we have 1,210 instances as training data and 444 in-
stances as test data. We slightly change this dataset
and collect all correct warrants.

After processing we are left with each instance as
the tuple T of type (P,C,Wc), where Wc is the cor-
rect warrant for the given instance. We later use this
data for further use.

In accordance with our assumptions, we make a
new dataset from the given (P,C,Wc) instances.
Given the tuples of (Premise,Claim and Correct
warrant), we link together all the Wc that are asso-
ciated to their respective claims.

Ci −→ [w1, w2, w3...]i , i ∈ (1, 169)

Next, we randomly choose one warrant (Wci) for
Ci from its respective set [w1, w2, w3...]i and make
a new dataset along with (P ). Hence, creating the
new dataset (P,Ci,Wci), we move to the next step of
generating negative instances with randomly choos-
ing premise for the (Ci,Wci) tuple. We treat the ini-
tial 1,210 instances (P,Ci,Wci) as Positive Dataset
PD and label them {1}. Next, we randomly select
Pr for Pr in (Pr, Ci,Wci) making sure that Pr does
not match with its original C as in PD. This ap-
proach makes sure that Pr and Ci forms neither
support nor attack relation between them. We call

Model Accuracy

Baseline model 72.71 ±2.17
+ Warrant 76.74 ±1.53

Table 2: Performance of claim-premise link detection
(averaged over 5 runs with different random seeds).

these tuples as Negative instances (Pr, Ci,Wci) and
term this dataset as Negative Dataset ND and label
them {0}. Further we combine these datasets and get
2420 instances of {Support, Non-relevant} relation,
labeled as {1,0} respectively. Later we apply the
same approach to testing dataset and get 888 test-
ing instances. We term this new combined dataset
as Benchmark Bm = PD ∈ (P,Ci,Wci, 1) ∪ ND ∈
(Pr, Ci,Wci, 0).

4.2 Settings

Word embeddings are initialized with 100-
dimensional GloVe vectors [16]. The words
that do not appear in GloVe are initialized with a
random value. We use the same hyperparameters
for training both models. The values of hyperpa-
rameters used in our experiments are summarized in
Table 1. We employ early stopping with a patience
of 15. Adagrad [22] is used for optimization.

During training, we divide the dataset of ARCC
into a training dataset and validation dataset with
8:2 split. We then get the best weights on the val-
idation dataset and use it in the testing phase. To
make sure that the dataset is evenly distributed in
both the training and validation set, we used a strat-
ified shuffle split. For the testing phase, we use 888
instances from the test dataset of ARCC.

In our experiments, we compare two models: (i)
baseline model : our model without the warrant en-
coding layer, and (ii) proposed model : our model
trained on Bm dataset along with warrants.

4.3 Results

The results of our experiments are shown in Ta-
ble 2. We observe that using warrants as background
knowledge significantly improves the performance of
our model. We attribute this to the fact that a
premise and a claim are more likely to be related
(i.e., the premise acts as evidence for the claim) if a
warrant links both of them.
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5 Conclusion and Future work

This paper has presented a first approach to incor-
porate background knowledge in the form of war-
rants to identify the correct premise from a given
set, for a given claim. The results reveal that hav-
ing in-domain knowledge in small fragments can help
identify the correct premise significantly. Although
the results look promising but there is still room for
further improvement for exploring this hypothesis.

The results obtained motivate us to dwell deeper
in the direction of using external knowledge. For
future work, we plan to investigate graphical way of
representing domain specific knowledge and incorpo-
rate it to improve evidence detection task. Also, we
will extend our approach to different corpora with
graphical knowledge representation.
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