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1 Introduction
Word embedding is the basis of neural network based

nature language processing (NLP) tasks. As monolin-
gual word embedding has been widely used in many lan-
guages (Mikolov et al., 2013a), similarities among differ-
ent languages were exploited by Mikolov et al. (2013b).
The similarity between words in two or more languages
can be represented by the correlation between word em-
bedding. Bilingual word embedding (BWE) is to mapp
the relationship between different monolingual word em-
beddings. Recently, several works show that BWE can be
learn without bilingual supervision (Zhang et al., 2017a;
Artetxe et al., 2018b). In this paper, we survey the
BWE from supervised methods to unsupervised meth-
ods: supervised BWE methods that need a large train-
ing dictionary, semi-supervised BWE methods that need
a small seed dictionary or only parallel corpus, unsuper-
vised BWE methods.

2 Supervised BWE
The supervised BWE proposed by Mikolov et al.

(2013b) exploits similarities between the source language
and the target language by a linear transformation ma-
trix. Supervised BWE methods usually need a large dic-
tionary, and the linear matrix would be trained between
language pairs in this dictionary. A set of word pairs
{X,Z} and their word vector representations {xi, zi}ni=1

are given, where n is the size of the word pairs, d is the
dimension of word embedding. The training objective

∗This work was conducted while Haipeng was an intern in NICT.

function of BWE is as follows:

min
W

∑
i

∥Wxi − zi∥2 = min
W

∥WX − Z∥2, (1)

where W is the transformation matrix to be learned such
that WX approximates Z. X,Z are the word embed-
ding matrices of size d × n, respectively. Dinu et al.
(2015) used a L2-regularized least-squares error objec-
tive instead of previous objective function:

min
W

∥WX − Z∥2 + λ ∥W∥ . (2)

They also used a globally corrected neighbour retrieval
method to mitigate the hubness problem. Xing et al.
(2015) improved the performance of bilingual word em-
bedding by enforcing word embedding normalized and
an orthogonality constraint on W to preserve the length
normalization. Then the bilingual word embedding prob-
lem has become the Orthogonal Procrustes problem and
W = UV T in the equation (2) can be acquired by the sin-
gular value decompositionZXT = UΣV T . After word
embedding could be normalized, the equation (2) that is
equivalent to maximize the sum of cosine similarities can
be reformulated as follows:

max
W

∑
i

cos(Wxi, zi). (3)

Artetxe et al. (2016) considered the monolingual in-
variance through orthogonality to prevent the degrada-
tion in monolingual tasks. Length normalization and
mean centering could be taken into consideration, so the
equation (2) is also equivalent to maximizing the sum of
dimension-wise covariance as

max
W

∑
i

cov(Wxi, zi). (4)
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Smith et al. (2017) showed that the linear transfor-
mation should be orthogonal to preserve self-consistent.
The inverted softmax retrieval replaced nearest neighbors
method to achieve better translation pairs. Artetxe et al.
(2018a) generalized and improved BWE mappings with
a multi-step framework of linear transformations such as
normalization, whitening, orthogonal transformation, re-
weighting, and dimensionality reduction behavior.

Compared with previous methods that learn transfor-
mation matrix from source language to target language,
Faruqui and Dyer (2014) mapped the word embedding
to a shared space where their similarity was maximized
through canonical correlation analysis that is a statistical
analysis method for measuring the linear correlation be-
tween two multidimensional variables as

W,G = CCA(X,Z) = argmax
W,G

ρ(WX,GZ)

= argmax
W,G

ρ(
E[(WX)(GZ)]√

E[(WX)2]E[(GZ)2]
),

(5)

where ρ(·) means the correlation between the projected
vectors, and W,G are projection matrices which map
X,Z to the shared space in the equation (5). Lu et al.
(2015) extended previous work with deep canonical cor-
relation analysis to learn non-linear mapping.

3 Semi-supervised BWE
As BWE was developing, some researchers found that

the supervision is not always necessary. Therefore, some
works tried to reduce the supervision in BWE. Specifi-
cally, the aligned sentence pairs and small lexicon seeds
were used as supervision of BWE.

3.1 Aligned Sentences as Supervision

BilBOWA (Bilingual Bag-of-Words without
Alignments) (Gouws et al., 2015) is a simple and
computationally-efficient model for learning bilingual
distributed representations of words which can scale
to large monolingual datasets and does not require
word-aligned parallel training data. Instead it trains
directly on monolingual data and extracts a bilingual
signal from a smaller set of raw-text sentence-aligned

data. The objective was optimized as

min
θe,θf

∑
l∈{e,f}

∑
w,h∈Dl

Ll(w, h; θl) + λΩ(θe, θf ), (6)

where Ω(·) is cross-lingual regularization term that was
used to constrain monolingual models over the context h
and target word w training pairs in the dataset D during
jointly training.

Wang et al. used bilingual maximum complete sub-
graphs (cliques), which play the role of a minimal unit for
bilingual sense representation (Wang et al., 2016, 2018).
Cliques are dynamically extracted according to the con-
textual information. Consequently, correspondence anal-
ysis, principal component analyses, and neural networks
are used to summarize the clique-word matrix into lower
dimensions to build the embedding model.

3.2 Small Lexicon as Supervision

Artetxe et al. (2017) proposed self-learning framework
to learn BWE with almost 25 word dictionary. During
the self-learning, the squared Euclidean distance could
be minimized:

min
W

∑
i

∑
j

Dij ∥Wxi − zj∥2 , (7)

where D is a binary matrix, and Dij = 1 if the ith source
word is aligned with the jth target word in the dictio-
nary. The source and target embedding would be the
length normalized and mean centered, and W would be
constrained to be an orthogonal matrix. So the equation
(7) is equivalent to maximizing the dot product as

max
W

Tr(WTZDTXT ), (8)

where Tr(·) means the sum of all elements in the main
diagonal of matrix, W = UV T in the equation (8)
can be acquired by the singular value decomposition
ZDTXT = UΣV T .

4 Unsupervised BWE
However, the lack of large word pair dictionary poses

a major practical problem for many language pairs. The
unsupervised BWE has attracted much attention. Zhang
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et al. (2017a) matched the distributions of the trans-
formed source language embedding x ∼ Px and target
language embedding z ∼ Pz via generative adversarial
network training. Two sets of monolingual word em-
bedding {xi}ni=1 and {zi}mi=1 with dimensionality d are
trained separately on two languages. The discriminator
D loss function is given by

LD = −Ez∼Pz logD(z)− Ex∼Px log(1−D(Wx)).

(9)
The generator loss function is as follows:

LG = −Ex∼Px logD(Wx)

= −Ex∼Px logD1(Wx)− Ez∼Pz logD2(W
T z)

= −Ex∼Px
logD(Wx)− λEx∼Px

cos(x,WTWx),

(10)

where W∈Rd×d is the transformation matrix to be
learned such that Wx approximates z, its transpose WT

which can transform the target language z back to the
source language x. D1, D2 are two separate discrimina-
tors. λ is a hyperparameter. Zhang et al. (2017b) used the
Wasserstein distance instead of cross-entropy in the loss
function. The Wasserstein distance is

W(PWx,Pz)

=
1

K
sup

∥f∥L≤K

Ez∼Pz
[f(z)]− Ex∼Px

[f(Wx)],
(11)

where f that is a K-Lipschitz function can be approxi-
mated with a neural network. The objective function for
the discriminator D can be formulated as

LD = Ex∼Px
[fD(Wx)]− Ez∼Pz

[fD(z)]. (12)

The generator loss function is given by

LD = −Ex∼Px
[fD(Wx)]. (13)

Conneau et al. (2018) used the same discriminator loss
function as the equation (9). For the the generator G, the
objective is to minimize

LG = −Ex∼Px
logD(Wx)− Ez∼Pz

log(1−D(z)).

(14)
They also built a synthetic parallel vocabulary to refine
the mapping W , and used cross-domain similarity local
scaling (CSLS) instead of nearest neighbors to measure

the similarity between mapped source words and target
words, as

CSLS(Wx, z) = 2cos(Wx, z)− r(Wx)− r(z).

(15)
r(Wx) =

1

K

∑
z∈N (Wx)

cos(Wx, z). (16)

r(z) =
1

K

∑
Wx∈N (z)

cos(Wx, z). (17)

where z ∈ N (Wx) means the K nearest neighborhood
of the mapped source embedding Wx and Wx ∈ N (z)

means the K nearest neighborhood of the target embed-
ding z. Dou et al. (2018) added variational autoencoder
into the generative adversarial network in order to learn
latent variables that can capture semantic meaning of
words. Therefore the discriminator D loss function is

LD = Evz∼qGz (v|z)[logD(vz)]

+ Evx∼qGx (v|x)[log(1−D(vx))].
(18)

The objective function of generator Gx is to minimize

LGx
= Evx∼qGx (v|x)[logPx′(x|vx)]

− Evx∼qGx (v|x)[logD(vx)],
(19)

where qGx
(v|x) and qGz

(v|z) is the posterior distribu-
tion of the latent variables, Px′(x|vx) is the reconstruc-
tion distribution. The generator Gz function is similar.
Sinkhorn distances and back-translation losses were used
in the (Xu et al., 2018). The objective function is

L(W,G) = dsh(W ) + dsh(G) + βdbt(W,G), (20)

dbt(W,G) =
∑
i

1− cos(xi, G(W (xi)))+∑
j

1− cos(zi,W (G(zi))),
(21)

where G is the transformation matrix to be learned such
that Gz approximates x, dsh(W ) is the Sinkhorn distance
between PWx, Pz , dsh(G) is the Sinkhorn distance be-
tween PGz , and Px, β is the hyperparameter.

Artetxe et al. (2018b) proposed a self-learning method
like Artetxe et al. (2017) without any word dictionary.
The objective function is similar as the equation (7),
which considered two directional transformation as

max
W,G

∑
i

∑
j

Dij(Wx ·Gz) (22)

W = V T and G = UT in the equation (22)
can be acquired by the singular value decomposition
ZDTXT = UΣV T .
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5 Conclusion and Future Work
In this paper, we surveyed the developing of bilingual

word embedding methods, from supervised to unsuper-
vised. We focused on the algorithms and methods in-
stead of the corresponding performances. In the future,
we will present the performances of different methods.
In addition, we will survey the applications of bilingual
word embedding in NLP, especially unsupervised neural
machine translation.
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