

Q20: Rinna Riddles Your Mind by Asking 20 Questions

Xianchao Wu+, Huang Hu*, Momo Klyen+, Kyohei Tomita+, Zhan Chen+
+ Microsoft Development Co., Ltd

 Shinagawa Grand Central Tower, 2-16-3 Konan Minato-ku, Tokyo 108-0075

{xiancwu, momokl, ktomita, zhanc}@microsoft.com
* Graduate School of Software and Microelectronics, Peking University

No.5 Yiheyuan Road, Haidian District, Beijing 100871

tonyhu@pku.edu.cn

1 Introduction

In this paper, we introduce a novel puzzle riddling
framework for an emotional chatbot, Rinna (Wu et al.
2016). First, the user is asked to think one topic word
or a role (or, named entities, such as a famous personal
name) and that topic word is unknown to Rinna. Then,
Rinna tries to guess (or, mind-reading) user’s topic
word by asking a sequence of questions, such as “Is
your role a male or a female?”. Based on user’s re-
sponses such as “yes”, “no”, or “not sure”, the candi-
date roles are ranked from the Rinna side. Sequentially,
the selection of the next question is based on user’s an-
swer to the former question and the existing prior rank-
ing of the questions as well as mutex relations among
questions. With no more than 20 questions, Rinna is
supposed to tackle user’s mind by delivering the cor-
rect answer.

If Rinna’s answer is confirmed by the user, then that
gaming session is recorded for a future usage of data
mining (such as updating the reference answers of one
role’s questions, in case that the candidate role’s ques-
tions are answered differently with the reference an-
swer). On the other hand, if Rinna could not provide a
correct answer (i.e., all Rinna’s answers were wrong),
then Rinna asks the user to provide the correct answer
and that session will be recorded as well for (1) new
role appending and (2) existing role updating to Rinna.

We argue that this Q20 gaming benefits the follow-
ing applications: (1) user profile construction, means
that user’s answer in mind reflects his/her interested
topic, and (2) product recommendation, means that the
roles can be replaced from famous person’s names to
partner companies’ product names that allow Rinna to
guess by following a similar Q20 workflow.

It is not trivial for constructing such a Q20 frame-
work, due to the following difficulties: (1) a database
of roles, or topic words of various domains (such as
persons, foods, animals, places) should be constructed
from Rinna’s side; (2) respectively for each of the roles
and topic words, a list of candidate questions together
with their reference answers should be collected and
constructed in a pre-determined form; (3) use users’
historical answer recoding to update the reference an-
swers to target roles’ (such as the answer of one famous

* Work done when Huang Hu was an internship student in Microsoft.

person’s marriage related question changes from “sin-
gle” to “married”). The background consideration is to
ask million level users to teach Rinna about the “up-
dating” of thousands of questions for million level
roles and topic words, and (4) relationships among
questions such that if one questions is answered by the
user, then consequently the number of available ques-
tions and the ranking of them are dynamically tuned.
For example, if a question (a) “Is your role a male?” is
sent to the user and the user answers “yes”, then ques-
tions such as (b) “Is your role a female?”, (c) “Did your
role obtain the best actress award of Oscar?” should
not be asked anymore for that game session. Their an-
swers are assigned to be “no” by default. Then, we de-
fine there is a “yes-no” relation between question (a)
and questions (b), (c).

In this paper, we first describe the database struc-
tures for our Q20 framework. Then, we describe our
role-ranking and question-ranking algorithms. Third,
we describe a question relation classifier that utilizes
neural networks and rich features. The classifier takes
two questions as inputs and then predict five types of
relations. We conclude this paper by showing statistics
of launching this Q20 framework to Rinna family chat-
bots.

2 Q20’s Data Structures

We first define the basic data structures for “Role”,
“Question”, “Mutex” and “RightProb”. Here, “Role” is
a table that stores roles (such as personal names, prod-
uct names and so on) and includes fields of:
1. Rid: unique role identity which is also the primary

key of this table;
2. Name: name of the role, such as “George Wash-

ington”;
3. Alias: alias of “Name”, such as “1st US president”;
4. Ans: a list of reference answers for the set of ques-

tions, such as “yes” for a question alike “Was your
role the president of US?”;

5. Rscore: prior score of current role, the score can
come from long time query frequencies of “Name”
and “Alias” of current role. The background con-
sideration is that, one role will be ranked relatively
high if its retrieval frequency is relatively high.

― 1312 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

“Question” is a table that manages the structures of
questions to be answered by the users of Rinna:
1. Qid: unique question identity, which is also the

primary key of this table;
2. Qtext: question text, such as “Is your role a

male?”;
3. Alias: alias question list for “QText”, such as “Is

your role a man?”; With this alias, we can ask the
users an identical question by different textual sen-
tences;

4. tagKey: the tag of current question, such as “gen-
der” for “Is your role a male?”;

5. tagValue: the value of the tag, such as “male” for
“gender” of current question. Note that, tagKey
and tagValue are used to “generate” questions
from given “attribute-value” of named entities
which are mined from Wikipedia and related chan-
nels;

We also determine the mutex relations of questions by
referring tagKey and tagValue in existing antonym and
synonym lexicons. We define five types of relations
between a pair of questions, namely, “yes-yes”, “yes-
no”, “no-yes”, “no-no”, and “notsure”. In order to de-
scribe the relationship between each question pairs, we
use a table named “Mutex” which contains fields of:
1. Qid: one question id;
2. Yesyes: stores a list of qids that share a “yes-yes”

relation with “qid”. Such as there is a “yes-yes”
relation between “Is your role born in Tokyo?” and
“is your role born in Japan?”;

3. Yesno: stores a list of qids that share a “yes-no”
relation with “qid”. Such as of between “Is your
role a male?” and “Is your role a female?”;

4. Noyes: stores a list of qids that share a “no-yes”
relation with “qid”. Such as of between “Is your
role a male?” and “Is your role a female?”;

5. Nono: stores a list of qids that share a “no-no” re-
lation with “qid”. Such as of between “Is your role
virtual?” and “Does your role live in cartoon?”.

6. Notsure: stores a list of qids that share a “not-sure”
relation with “qid”. Such as of between “Is your
role a male?” and “Is your role virtual?”. This re-
lation is rather ambiguous and majorly influences
the candidate set of next question(s). Basically, all
questions that do not share the former four rela-
tions can be included in this “notsure” list.

It is essential to collect users’ opinions about questions
of roles. Especially, when Rinna successfully figures
out a user’s role in mind, then that user’s answers to the
20 (or less) questions are important for (1) reference
answer correcting, (2) the next session question/role
ranking. For example, for one role’s one question, sup-
pose we did not assign its reference answer beforehand,
and after a period, 80% of users answered “yes” to that
question, then we can consider updating the reference
answer of that question of from “not sure” to “yes”.

Motivated by this, we define a table named “RightProb”
that has fields of:
1. Rid: one role identity;
2. Qid: one question identity;
3. c(yes), c(no), c(not sure): the three frequencies

(counts) that users answered “yes”/“no”/“not sure”
for “Qid” knowing that the final correct answer is
“Rid”. This frequency is collected when a Q20
game session success.

3 Question Ranking and Role Ranking

In this section, we respectively describe the ranking al-
gorithms for candidate question ranking and for candi-
date role ranking.
The general framework of our algorithm is alike:
1. Select a candidate question i based on weight qi;
2. Receive user’s answer and update weight pj for

candidate roles;
3. If 20 rounds or early stop condition is satisfied,

then goto 4; otherwise goto 1;
4. Show the top-1 role to the user, ask the user if it is

correct; continue to show the top-3 roles if the user
say wrong, ask the user again of the correctness;

5. Store current playing session.

In the following, we respectively explain how to com-
pute qi and pj.

௜ݍ = ෌ {௜,௝ܯ௝݌} + ܰ(௜ܻ) + ௜ܺ
௃

௝ୀଵ
. (1)

Here, qi stands for the weight of the i-th candidate ques-
tion, pj is initialized as the normalized score (probabil-
ity) of the j-th candidate role,

௝݌ =
ோ௦௖௢௥௘(௝)

∑ ோ௦௖௢௥௘(௝)಻
ೕసభ

, (2)

in which Rscore(j) stands for the prior weight (such as
yearly retrieving frequency of the j-th candidate role in
Bing), and Mi,j is the negative Shannon entropy for the
binary Bernoulli distribution of the users’ answers (in
which, we only use “yes” and “no”) of i-th question for
j-th candidate role. Suppose there are J roles in total in
database “Role”.

௜,௝ܯ = ௜ܻ,௝݈݃݋ଶ ௜ܻ,௝ + (1 − ௜ܻ,௝)݈݃݋ଶ(1 − ௜ܻ,௝),

௜ܻ,௝ =
௖(௬௘௦,௜,௝)ା ఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦,௜,௝)ା௖(௡௢,௜,௝)ାఈା ఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
.

Here, c(yes/no, i, j) is the frequency that users answer
“yes” or “no” to the i-th question for the j-th role, Yi,j is
the “yes” probability of the i-th question for the j-th role.
We use α (e.g., α=1) for smoothing. Also, we introduce
another parameter σ (e.g., σ=1,000) in case that the ref-
erence answer Ans(i,j) in database “Role” is ‘yes’. θ
function here returns 1 when Ans(i, j) equals to ‘yes’
and 0 otherwise.
 The introduction of ߪ ∗ ,݅)ݏ݊ܣ)ߠ ݆),ᇱ -ᇱ) is to balݏ݁ݕ
ance the “reference answer” and the “users’ selection
tendencies” for one question aiming for one role guess-
ing. Note that, (1) the reference answer influences the
ranking of the next question for collecting users’ selec-
tions and (2) users’ selection tendencies can further
help updating the reference answers.

― 1313 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Figure 1. Shape of Mi,j with respect to Yi,j.

Figure 1 depicts the shape of Mi,j being a function of
Yi,j. From the figure we see that we prefer to assign
higher weights to those questions that have clear
“yes” or “no” answers to all (or, as many as possible)
candidate roles, due to Mi,j takes higher values when
Yi,j is closer to 0.0 or 1.0. These questions have rather
higher distinguish abilities compared with questions
that have “not-sure” answers where Yi,j is near 0.5.
 In Equation (1), we use N(Yi), another Shannon en-
tropy for the distribution of the expectation of Yi un-
der entity importance distribution pj in which j ranges
over from 1 to J. That is,
ܰ(௜ܻ) = −ॱ(௜ܻ)݈݃݋ଶॱ(௜ܻ) − ॱ(1 − ௜ܻ)݈݃݋ଶॱ(1 − ௜ܻ)
Here,

ॱ(௜ܻ) = ෌ ௝݌} ௜ܻ,௝}
௃

௝ୀଵ
.

This item assigns a bonus for the questions that have a
relatively larger “information” or “surprise degree”.
 The third item we use in Equation (1) is Xi for
measuring the mutex information. Xi is computed dur-
ing the interactive playing with one user. When se-
lecting the first question, Xi is 0 for all candidate ques-
tions. Then, we use 1-order Markov constraint to
compute Xi when selecting the next question, that is:
1. Xi = Xi -1000, when i is the former question i';
2. Xi = Xi -λ*{(p0(i, i')+p1(i, i'))*θ(i', “yes”)+(p2(i,

i')+p3(i, i'))*θ(i', “no”)+p5(i, i')*θ(i', “not sure”)},
when the former question i' is answered “yes”,
we use p0 and p1 which measure (i, i')’s relations
of “yes-yes” and “yes-no”; or when i' is answered
“no”, we use p2 and p3 which measure (i, i')’s re-
lations of “no-yes” and “no-no”; or when i' is an-
swered “not sure”, we use p4 which measures (i,
i') “not sure” relation. Function θ(i', “yes”) takes
a value of 1 when the answer for question i' is
“yes” and 0 otherwise. λ (such as 5, 10) here is a
tunable hyperparameter.

Through Xi, we can punish qi for those questions that
share a strong relation (not “not-sure”) with former
questions and avoid asking the user to answer ques-
tions such as “is your role a woman?” right after a
question alike “is your role a man?” being answered.
 Finally, in order to bring more “random” to the
game, we randomly select the next question from the
top-N (such as 10) candidate questions ranked by qi.
 Now, we look at candidate role ranking. At the be-
ginning, we use Rscore(j) for initializing pj for the
first-time ranking. Then, when one question i is an-
swered, we update pj by:

1. pj = pj * Y'i,j when i is answered “yes”;
2. pj = pj * N'i,j when i is answered “no”;
3. pj = pj * (1-Y'i,j-N'i,j) when i is answered “not

sure”.

Here, Y'i,j and N'i,j are defined as:

 ܻ′௜,௝ =
௖(௬௘௦,௜,௝)ାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦/௡௢/௡௢௧௦௨௥௘,௜,௝)ାఉାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
;

 ܰ′௜,௝ =
௖(௡௢,௜,௝)ାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦/௡௢/௡௢௧௦௨௥௘,௜,௝)ାఉାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
.

Note that, we allow early stopping (also refer to Fig-
ure 2) by setting several conditions, such as when the
first candidate role’s pj is 100 times larger than the
second candidate role, or the value of normalized pj is
larger than 0.8. ߚ (e.g., 2=ߚ) is for smoothing.

4 Question Relation Classification

When we compute Xi in Equation (1) or when we add
a new candidate role to the database “Role” and manu-
ally assign the reference answers or when we append a
new question, we will need to consider to automatically
predict and utilize mutex relations among questions for
time saving. We model this as a multiple-class classifi-
cation problem, by taking a pair of questions as inputs
and predict their relationships, each relationship being
attached with a probability.
 Making use of existing antonym and synonym lexi-
cons, we manually construct a dataset with 38,375
samples and each sample is in a format of <q1, q2, rela-
tion> in which relation takes five possible values.
 We train a multiple layer perceptron (MLP) neural
network. The network contains one hidden layer with
a dimension of 100, an input layer with 1,134 dimen-
sions for representing bag-of-words of the two ques-
tions and 10 features for describing the similarities of
the two questions, and finally a softmax output layer
for predicting five classes.
 These 10 features include, BM25 score (Robertson
and Zaragoza, 2009), word2vec distance (averaged
value) (Mikolov et al., 2013), edit distances of word
and character levels, longest common sub-sequences of
word and character levels, ratios of common words and
characters, and string kernels (Lodhi et al., 2002) of
word and character levels.

label 0
yes-yes

1
yes-no

2
no-yes

3
no-no

4
not-sure

1,885 25,645 1,623 390 8,832

Table 1. Dataset for classifier training.

Pre-
dicted

0 1 2 3 4 Re-
call

0 739 8 83 15 73 0.805
1 15 4,040 3 11 968 0.802
2 127 4 322 77 314 0.382
3 13 3 17 296 82 0.720
4 137 216 416 145 3,532 0.794
Preci-
sion

0.717 0.946 0.383 0.544 0.711

Accuracy (micro-avg): 0.766
Accuracy (macro-avg): 0.701

Table 2. Confusion table for the classification results.

― 1314 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Q: is your role the King of some Cartoon?
Q1: is your role strange?
p01234 0.267 0.099 0.186 0.180 0.268
Q2: is your role a King?
p01234 0.265 0.098 0.192 0.200 0.244

Table 3. Examples of question relations.

Table 2 shows the confusion table of the classification
results of the five labels, together with class-specific
precision and recall. We obtain accuracies of 76.6%
under micro-average and 70.1% under macro-average.
From this table, we see that the accuracies are largely
influenced by the amount of training data (such as la-
bels 2 and 3). Table 3 shows one question and two re-
lated questions with five relation probabilities attached.
For these two questions, p0 is relatively larger means a
strong “yes-yes” relation between Q and Q1 and be-
tween Q and Q2.

5 Ask Users to Teach Rinna

Every time our chatbot successfully predicts the role in
the user’s mind, we store that game session into our re-
lated databases and timely update our ranking models,
such as the answer counts c(“yes”, “no”, and “not sure”,
i, j) for a given question i for a role j. Through this way,
we can continuously learn the “correct” answer for one
question related to one role. Suppose we assigned a
“not sure” to “is your role married?” for a person A
(such as a famous movie star). Then, after a period,
more users answered “yes” to this same question for A,
we can consequently set a condition to update the ref-
erence answer of from “not sure” to “yes” for A. Also,
if A divorced after a period, and we can further update
“yes” to “no” based on users’ feedbacks. Generally, it
is easy to extend the “yes”, “no”, “not sure” answers to
natural language sentences or words such as “quite sure
about that” (for “yes”), “never heard that” (for “no”) or
“maybe” (for “not sure”). Furthermore, the questions
and answers can be designed to be domain specific,
such as an answer “spicy” or “sweet” for “Which taste
do you prefer?” of food domain.

6 Experiments

In our initial model, we selected Chinese as our test
language and collected 10,633 famous people and vir-
tual characters all around the world. We collected
1,800 questions. During a year-period of playing, we
collected 27.5 million times of plays in which we ob-
tained a top-1 prediction accuracy of 67.3% and a top-
3 prediction accuracy of 88.4%. Users also input the
entity names (which are not covered by our database)
for 6.4% of the playing sessions and 431K unique en-
tity names were input by the users. This is a valuable
source for appending novel entity names and for updat-
ing our related databases.
 Figure 2 also depicts the distribution of number of
turns for the 67.3% successful sessions, in which
47.4% required 20 turns and the other 52.6% could ter-
minate in an early stop. This is important for saving

 Figure 2. Distribution of num. of successful turns.

users’ time for avoiding too many questions and en-
sure that their minds are detected successfully.

7 Conclusion

We have presented a simple role-oriented mind-read-
ing feature for our chatbot, Rinna (Wu et al., 2016),
with million-level users. We introduced the database
structures of managing roles, questions, question rela-
tions, and users’ answers for the questions of the roles.
We designed entropy-based question ranking and role
ranking algorithms by utilizing users’ answer distribu-
tions, prior weights of the roles, and mutex relations
among the questions for filtering next question selec-
tion. We also proposed a multi-class classifier making
use of MLP for automatically determine the probabili-
ties of relations between two questions. We finally
achieved a top-1 accuracy of 67.3% and a top-3 accu-
racy of 88.4% under 27.5 million time playing.
 We believe that our proposed idea and solutions are
helpful for (1) improving the interestingness of real-
world people’s interaction with virtual chatbots, and
(2) extending novel pipelines of constructing user pro-
files by dynamically selecting related questions for de-
termining which products they really want in scenarios
of product recommendation. In the future, we would
like to update the entropy-based ranking algorithms by
deep reinforcement learning algorithms (Sutton and
Barto, 2018). That is, by dynamically learning the ac-
tion (question selection, candidate role sorting) ranking
policies.

References
Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:

An Introduction. 2018. The MIT Press.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini,
and Chris Watkins. Text Classification using String Kernels. In
JMLR 2002. Pp. 419-444.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In NIPS 2013.

Stephen Robertson and Hugo Zaragoza.The Probabilistic Relevance
Framework: BM25 and Beyond. In Foundations and Trends in
Information Retrieval archive. 3(4), 2009. Pages 333-389.

Xianchao Wu, Kazushige Ito, Katsuya Iida, Kazuna Tsuboi, Momo

Klyen. りんな：女子高生人工知能. 言語処理学会 2016.

0.7%
2.2%

4.6%
6.7%

8.3%

8.5%

7.9%7.1%

6.3%

47.4%

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
ill

io
n distribution of # of turns for Q20 playing

― 1315 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

