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1 Introduction 

In this paper, we introduce a novel puzzle riddling 
framework for an emotional chatbot, Rinna (Wu et al. 
2016). First, the user is asked to think one topic word 
or a role (or, named entities, such as a famous personal 
name) and that topic word is unknown to Rinna. Then, 
Rinna tries to guess (or, mind-reading) user’s topic 
word by asking a sequence of questions, such as “Is 
your role a male or a female?”. Based on user’s re-
sponses such as “yes”, “no”, or “not sure”, the candi-
date roles are ranked from the Rinna side. Sequentially, 
the selection of the next question is based on user’s an-
swer to the former question and the existing prior rank-
ing of the questions as well as mutex relations among 
questions. With no more than 20 questions, Rinna is 
supposed to tackle user’s mind by delivering the cor-
rect answer.  

If Rinna’s answer is confirmed by the user, then that 
gaming session is recorded for a future usage of data 
mining (such as updating the reference answers of one 
role’s questions, in case that the candidate role’s ques-
tions are answered differently with the reference an-
swer). On the other hand, if Rinna could not provide a 
correct answer (i.e., all Rinna’s answers were wrong), 
then Rinna asks the user to provide the correct answer 
and that session will be recorded as well for (1) new 
role appending and (2) existing role updating to Rinna. 

We argue that this Q20 gaming benefits the follow-
ing applications: (1) user profile construction, means 
that user’s answer in mind reflects his/her interested 
topic, and (2) product recommendation, means that the 
roles can be replaced from famous person’s names to 
partner companies’ product names that allow Rinna to 
guess by following a similar Q20 workflow.  

It is not trivial for constructing such a Q20 frame-
work, due to the following difficulties: (1) a database 
of roles, or topic words of various domains (such as 
persons, foods, animals, places) should be constructed 
from Rinna’s side; (2) respectively for each of the roles 
and topic words, a list of candidate questions together 
with their reference answers should be collected and 
constructed in a pre-determined form; (3) use users’ 
historical answer recoding to update the reference an-
swers to target roles’ (such as the answer of one famous 
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person’s marriage related question changes from “sin-
gle” to “married”). The background consideration is to 
ask million level users to teach Rinna about the “up-
dating” of thousands of questions for million level 
roles and topic words, and (4) relationships among 
questions such that if one questions is answered by the 
user, then consequently the number of available ques-
tions and the ranking of them are dynamically tuned. 
For example, if a question (a) “Is your role a male?” is 
sent to the user and the user answers “yes”, then ques-
tions such as (b) “Is your role a female?”, (c) “Did your 
role obtain the best actress award of Oscar?” should 
not be asked anymore for that game session. Their an-
swers are assigned to be “no” by default. Then, we de-
fine there is a “yes-no” relation between question (a) 
and questions (b), (c). 

In this paper, we first describe the database struc-
tures for our Q20 framework. Then, we describe our 
role-ranking and question-ranking algorithms. Third, 
we describe a question relation classifier that utilizes 
neural networks and rich features. The classifier takes 
two questions as inputs and then predict five types of 
relations. We conclude this paper by showing statistics 
of launching this Q20 framework to Rinna family chat-
bots. 

2 Q20’s Data Structures 

We first define the basic data structures for “Role”, 
“Question”, “Mutex” and “RightProb”. Here, “Role” is 
a table that stores roles (such as personal names, prod-
uct names and so on) and includes fields of:  
1. Rid: unique role identity which is also the primary 

key of this table; 
2. Name: name of the role, such as “George Wash-

ington”; 
3. Alias: alias of “Name”, such as “1st US president”; 
4. Ans: a list of reference answers for the set of ques-

tions, such as “yes” for a question alike “Was your 
role the president of US?”; 

5. Rscore: prior score of current role, the score can 
come from long time query frequencies of “Name” 
and “Alias” of current role. The background con-
sideration is that, one role will be ranked relatively 
high if its retrieval frequency is relatively high. 
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“Question” is a table that manages the structures of  
questions to be answered by the users of Rinna: 
1. Qid: unique question identity, which is also the 

primary key of this table; 
2. Qtext: question text, such as “Is your role a 

male?”; 
3. Alias: alias question list for “QText”, such as “Is 

your role a man?”; With this alias, we can ask the 
users an identical question by different textual sen-
tences; 

4. tagKey: the tag of current question, such as “gen-
der” for “Is your role a male?”; 

5. tagValue: the value of the tag, such as “male” for 
“gender” of current question. Note that, tagKey 
and tagValue are used to “generate” questions 
from given “attribute-value” of named entities 
which are mined from Wikipedia and related chan-
nels; 

We also determine the mutex relations of questions by 
referring tagKey and tagValue in existing antonym and 
synonym lexicons. We define five types of relations 
between a pair of questions, namely, “yes-yes”, “yes-
no”, “no-yes”, “no-no”, and “notsure”. In order to de-
scribe the relationship between each question pairs, we 
use a table named “Mutex” which contains fields of: 
1. Qid: one question id; 
2. Yesyes: stores a list of qids that share a “yes-yes” 

relation with “qid”. Such as there is a “yes-yes” 
relation between “Is your role born in Tokyo?” and 
“is your role born in Japan?”; 

3. Yesno: stores a list of qids that share a “yes-no” 
relation with “qid”. Such as of between “Is your 
role a male?” and “Is your role a female?”; 

4. Noyes: stores a list of qids that share a “no-yes” 
relation with “qid”. Such as of between “Is your 
role a male?” and “Is your role a female?”; 

5. Nono: stores a list of qids that share a “no-no” re-
lation with “qid”. Such as of between “Is your role 
virtual?” and “Does your role live in cartoon?”. 

6. Notsure: stores a list of qids that share a “not-sure” 
relation with “qid”. Such as of between “Is your 
role a male?” and “Is your role virtual?”. This re-
lation is rather ambiguous and majorly influences 
the candidate set of next question(s). Basically, all 
questions that do not share the former four rela-
tions can be included in this “notsure” list. 

It is essential to collect users’ opinions about questions 
of roles. Especially, when Rinna successfully figures 
out a user’s role in mind, then that user’s answers to the 
20 (or less) questions are important for (1) reference 
answer correcting, (2) the next session question/role 
ranking. For example, for one role’s one question, sup-
pose we did not assign its reference answer beforehand, 
and after a period, 80% of users answered “yes” to that 
question, then we can consider updating the reference 
answer of that question of from “not sure” to “yes”. 

Motivated by this, we define a table named “RightProb” 
that has fields of: 
1. Rid: one role identity; 
2. Qid: one question identity; 
3. c(yes), c(no), c(not sure): the three frequencies 

(counts) that users answered “yes”/“no”/“not sure” 
for “Qid” knowing that the final correct answer is 
“Rid”. This frequency is collected when a Q20 
game session success. 

3 Question Ranking and Role Ranking 

In this section, we respectively describe the ranking al-
gorithms for candidate question ranking and for candi-
date role ranking. 
The general framework of our algorithm is alike: 
1. Select a candidate question i based on weight qi; 
2. Receive user’s answer and update weight pj for 

candidate roles; 
3. If 20 rounds or early stop condition is satisfied, 

then goto 4; otherwise goto 1; 
4. Show the top-1 role to the user, ask the user if it is 

correct; continue to show the top-3 roles if the user 
say wrong, ask the user again of the correctness; 

5. Store current playing session. 

In the following, we respectively explain how to com-
pute qi and pj. 

௜ݍ = ෌ {௜,௝ܯ௝݌} + ܰ( ௜ܻ) + ௜ܺ
௃

௝ୀଵ
.         (1) 

Here, qi stands for the weight of the i-th candidate ques-
tion, pj is initialized as the normalized score (probabil-
ity) of the j-th candidate role,  

௝݌ =
ோ௦௖௢௥௘(௝)

∑ ோ௦௖௢௥௘(௝)಻
ೕసభ

,                     (2) 

in which Rscore(j) stands for the prior weight (such as 
yearly retrieving frequency of the j-th candidate role in 
Bing), and Mi,j is the negative Shannon entropy for the 
binary Bernoulli distribution of the users’ answers (in 
which, we only use “yes” and “no”) of i-th question for 
j-th candidate role. Suppose there are J roles in total in 
database “Role”.  

௜,௝ܯ =  ௜ܻ,௝݈݃݋ଶ ௜ܻ,௝ + (1 − ௜ܻ,௝)݈݃݋ଶ(1 − ௜ܻ,௝),  

௜ܻ,௝ =
௖(௬௘௦,௜,௝)ା ఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦,௜,௝)ା௖(௡௢,௜,௝)ାఈା ఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
.  

Here, c(yes/no, i, j) is the frequency that users answer 
“yes” or “no” to the i-th question for the j-th role, Yi,j is 
the “yes” probability of the i-th question for the j-th role. 
We use α (e.g., α=1) for smoothing. Also, we introduce 
another parameter σ (e.g., σ=1,000) in case that the ref-
erence answer Ans(i,j) in database “Role” is ‘yes’. θ 
function here returns 1 when Ans(i, j) equals to ‘yes’ 
and 0 otherwise.  
    The introduction of ߪ ∗ ,݅)ݏ݊ܣ)ߠ ݆),ᇱ -ᇱ) is to balݏ݁ݕ
ance the “reference answer” and the “users’ selection 
tendencies” for one question aiming for one role guess-
ing. Note that, (1) the reference answer influences the 
ranking of the next question for collecting users’ selec-
tions and (2) users’ selection tendencies can further 
help updating the reference answers. 
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Figure 1. Shape of Mi,j with respect to Yi,j. 

Figure 1 depicts the shape of Mi,j being a function of 
Yi,j. From the figure we see that we prefer to assign 
higher weights to those questions that have clear 
“yes” or “no” answers to all (or, as many as possible) 
candidate roles, due to Mi,j takes higher values when 
Yi,j is closer to 0.0 or 1.0. These questions have rather 
higher distinguish abilities compared with questions 
that have “not-sure” answers where Yi,j is near 0.5.   
    In Equation (1), we use N(Yi), another Shannon en-
tropy for the distribution of the expectation of Yi un-
der entity importance distribution pj in which j ranges 
over from 1 to J. That is, 
ܰ( ௜ܻ) = −ॱ( ௜ܻ)݈݃݋ଶॱ( ௜ܻ) − ॱ(1 − ௜ܻ)݈݃݋ଶॱ(1 − ௜ܻ) 
Here, 

ॱ( ௜ܻ) =  ෌ ௝݌} ௜ܻ,௝}
௃

௝ୀଵ
. 

This item assigns a bonus for the questions that have a 
relatively larger “information” or “surprise degree”.  
    The third item we use in Equation (1) is Xi for 
measuring the mutex information. Xi is computed dur-
ing the interactive playing with one user. When se-
lecting the first question, Xi is 0 for all candidate ques-
tions. Then, we use 1-order Markov constraint to 
compute Xi when selecting the next question, that is: 
1. Xi = Xi -1000, when i is the former question i'; 
2. Xi = Xi -λ*{(p0(i, i')+p1(i, i'))*θ(i', “yes”)+(p2(i, 

i')+p3(i, i'))*θ(i', “no”)+p5(i, i')*θ(i', “not sure”)}, 
when the former question i' is answered “yes”,  
we use p0 and p1 which measure (i, i')’s relations 
of “yes-yes” and “yes-no”; or when i' is answered 
“no”, we use  p2 and p3 which measure (i, i')’s re-
lations of “no-yes” and “no-no”; or when i' is an-
swered “not sure”, we use p4 which measures (i, 
i') “not sure” relation. Function θ(i', “yes”) takes 
a value of 1 when the answer for question i' is 
“yes” and 0 otherwise. λ (such as 5, 10) here is a 
tunable hyperparameter. 

Through Xi, we can punish qi for those questions that 
share a strong relation (not “not-sure”) with former 
questions and avoid asking the user to answer ques-
tions such as “is your role a woman?” right after a 
question alike “is your role a man?” being answered. 
    Finally, in order to bring more “random” to the 
game, we randomly select the next question from the 
top-N (such as 10) candidate questions ranked by qi. 
    Now, we look at candidate role ranking. At the be-
ginning, we use Rscore(j) for initializing pj for the 
first-time ranking. Then, when one question i is an-
swered, we update pj by:   

1. pj = pj * Y'i,j when i is answered “yes”; 
2. pj = pj * N'i,j when i is answered “no”; 
3. pj = pj * (1-Y'i,j-N'i,j) when i is answered “not 

sure”. 

Here, Y'i,j and N'i,j are defined as: 

 ܻ′௜,௝ =
௖(௬௘௦,௜,௝)ାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦/௡௢/௡௢௧௦௨௥௘,௜,௝)ାఉାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
; 

 ܰ′௜,௝ =
௖(௡௢,௜,௝)ାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)

௖(௬௘௦/௡௢/௡௢௧௦௨௥௘,௜,௝)ାఉାఙ∗ఏ(஺௡௦(௜,௝),ᇲ௬௘௦ᇲ)
.  

Note that, we allow early stopping (also refer to Fig-
ure 2) by setting several conditions, such as when the 
first candidate role’s pj is 100 times larger than the 
second candidate role, or the value of normalized pj is 
larger than 0.8. ߚ (e.g., 2=ߚ) is for smoothing.  

4 Question Relation Classification 

When we compute Xi in Equation (1) or when we add 
a new candidate role to the database “Role” and manu-
ally assign the reference answers or when we append a 
new question, we will need to consider to automatically 
predict and utilize mutex relations among questions for 
time saving. We model this as a multiple-class classifi-
cation problem, by taking a pair of questions as inputs 
and predict their relationships, each relationship being 
attached with a probability.  
    Making use of existing antonym and synonym lexi-
cons, we manually construct a dataset with 38,375 
samples and each sample is in a format of <q1, q2, rela-
tion> in which relation takes five possible values.  
    We train a multiple layer perceptron (MLP) neural 
network. The network contains one hidden layer with 
a dimension of 100, an input layer with 1,134 dimen-
sions for representing bag-of-words of the two ques-
tions and 10 features for describing the similarities of 
the two questions, and finally a softmax output layer 
for predicting five classes.  
    These 10 features include, BM25 score (Robertson 
and Zaragoza, 2009), word2vec distance (averaged 
value) (Mikolov et al., 2013), edit distances of word 
and character levels, longest common sub-sequences of 
word and character levels, ratios of common words and 
characters, and string kernels (Lodhi et al., 2002) of 
word and character levels. 
     

label 0 
yes-yes 

1 
yes-no 

2 
no-yes 

3 
no-no 

4 
not-sure 

#  1,885 25,645 1,623 390 8,832 

Table 1. Dataset for classifier training. 
 

Pre-
dicted  

0 1 2 3 4 Re-
call 

0 739 8 83 15 73 0.805 
1 15 4,040 3 11 968 0.802 
2 127 4 322 77 314 0.382 
3 13 3 17 296 82 0.720 
4 137 216 416 145 3,532 0.794 
Preci-
sion 

0.717 0.946 0.383 0.544 0.711  

Accuracy (micro-avg): 0.766 
Accuracy (macro-avg): 0.701 

Table 2. Confusion table for the classification results. 
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Q: is your role the King of some Cartoon? 
Q1: is your role strange? 
p01234 0.267 0.099 0.186 0.180 0.268 
Q2: is your role a King? 
p01234 0.265 0.098 0.192 0.200 0.244 

Table 3. Examples of question relations. 
 

Table 2 shows the confusion table of the classification 
results of the five labels, together with class-specific 
precision and recall. We obtain accuracies of 76.6% 
under micro-average and 70.1% under macro-average. 
From this table, we see that the accuracies are largely 
influenced by the amount of training data (such as la-
bels 2 and 3).  Table 3 shows one question and two re-
lated questions with five relation probabilities attached. 
For these two questions, p0 is relatively larger means a 
strong “yes-yes” relation between Q and Q1 and be-
tween Q and Q2. 

5 Ask Users to Teach Rinna 

Every time our chatbot successfully predicts the role in 
the user’s mind, we store that game session into our re-
lated databases and timely update our ranking models, 
such as the answer counts c(“yes”, “no”, and “not sure”, 
i, j) for a given question i for a role j. Through this way, 
we can continuously learn the “correct” answer for one 
question related to one role. Suppose we assigned a 
“not sure” to “is your role married?” for a person A 
(such as a famous movie star). Then, after a period, 
more users answered “yes” to this same question for A, 
we can consequently set a condition to update the ref-
erence answer of from “not sure” to “yes” for A. Also, 
if A divorced after a period, and we can further update 
“yes” to “no” based on users’ feedbacks. Generally, it 
is easy to extend the “yes”, “no”, “not sure” answers to 
natural language sentences or words such as “quite sure 
about that” (for “yes”), “never heard that” (for “no”) or 
“maybe” (for “not sure”). Furthermore, the questions 
and answers can be designed to be domain specific, 
such as an answer “spicy” or “sweet” for “Which taste 
do you prefer?” of food domain. 

6 Experiments 

In our initial model, we selected Chinese as our test 
language and collected 10,633 famous people and vir-
tual characters all around the world. We collected 
1,800 questions. During a year-period of playing, we 
collected 27.5 million times of plays in which we ob-
tained a top-1 prediction accuracy of 67.3% and a top-
3 prediction accuracy of 88.4%. Users also input the 
entity names (which are not covered by our database) 
for 6.4% of the playing sessions and 431K unique en-
tity names were input by the users. This is a valuable 
source for appending novel entity names and for updat-
ing our related databases.  
    Figure 2 also depicts the distribution of number of 
turns for the 67.3% successful sessions, in which 
47.4% required 20 turns and the other 52.6% could ter-
minate in an early stop. This is important for saving  

 
  Figure 2. Distribution of num. of successful turns. 

 
users’ time for avoiding too many questions and en-
sure that their minds are detected successfully. 

7 Conclusion 

We have presented a simple role-oriented mind-read-
ing feature for our chatbot, Rinna (Wu et al., 2016), 
with million-level users. We introduced the database 
structures of managing roles, questions, question rela-
tions, and users’ answers for the questions of the roles. 
We designed entropy-based question ranking and role 
ranking algorithms by utilizing users’ answer distribu-
tions, prior weights of the roles, and mutex relations 
among the questions for filtering next question selec-
tion. We also proposed a multi-class classifier making 
use of MLP for automatically determine the probabili-
ties of relations between two questions. We finally 
achieved a top-1 accuracy of 67.3% and a top-3 accu-
racy of 88.4% under 27.5 million time playing.  
    We believe that our proposed idea and solutions are 
helpful for (1) improving the interestingness of real-
world people’s interaction with virtual chatbots, and 
(2) extending novel pipelines of constructing user pro-
files by dynamically selecting related questions for de-
termining which products they really want in scenarios 
of product recommendation. In the future, we would 
like to update the entropy-based ranking algorithms by 
deep reinforcement learning algorithms (Sutton and 
Barto, 2018). That is, by dynamically learning the ac-
tion (question selection, candidate role sorting) ranking 
policies. 
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