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Abstract 

   The language model is a key to many tasks like 

machine translation, speech recognition, and input 

method. While neural network language model shows 

better accuracy and scalability to a wider context, the 

cost to get the probability of next word is non-trivial. 

Moreover, eastern Asian languages like Japanese and 

Chinese can easily have a large vocabulary over 100K 

words to cover the most frequently appeared tokens. 

In this paper, a fast RNN model named JLM1 with a 

hybrid optimization is proposed. The experiment on 

BCCWJ Japanese corpus shows a 50x speed up during 

inference with decoder and up to 90% model size 

reduced without significant perplexity change. 

1 Introduction 

Statistical language model estimates the probability of a 

sequence by calculating the probability of the next word 

giving the context.  

𝑃(𝑤0, … , 𝑤1) =  ∏ 𝑃(𝑤𝑖|𝑤𝑜 , … , 𝑤𝑖−1)

𝑛

𝑖=0

 (1) 

The counted based language model calculates the 

probability of the next word by counting the frequency of 

such a context with and without the next word. 

𝑃(𝑤𝑖|𝑤0, … , 𝑤𝑖−1) =  
𝑐𝑜𝑢𝑛𝑡(𝑤0, … 𝑤𝑖−1)

𝑐𝑜𝑢𝑛𝑡(𝑤0, … , 𝑤𝑖)
  (2) 

It is hard to enumerate all the combinations. In practice, 

applications will only use tri-gram to avoid exponential 

growth of storage. Neural network language model with 

word embeddings, as an alternative, has been studied 

(Bengio, et al. 2003, Mikolov, et al. 2010). In recent years, 

on standard benchmarks, RNN language model achieves 

the state of art perplexity (Jozefowicz, et al. 2016) and 

outperforms the traditional non-parametric count based 

language model (Kneser and Ney 1995).  

However, comparing to count based n-gram language 

model, the probability of next word is not a simple table 

lookup. Instead, the next word probability distribution is 

computed from context each time. The computation 

                                                           
1 https://github.com/jiali-ms/JLM 

involves a matrix operation of vocabulary size and a final 

softmax over the vocabulary-sized logits. Techniques like 

hierarchical softmax (Mnih and Hinton 2008), target 

sampling (Jean, et al. 2017), and noise contrast estimation 

(Gutmann and Hyvärinen 2010) can reduce the training 

time of large vocabulary language model by advanced 

sampling. But inference time cannot simply be reduced. A 

fast RNN language model is vital for real-time applications 

to run in various clients like mobile or PC without GPU 

acceleration. Also, such applications have a limited budget 

for model size, sometimes, only a few Mb is allowed for 

software distribution.  

Japanese and Chinese have an additional requirement 

for high-performance language model as the input is not 

always segmented words. Conversion or decoding is an 

essential part. Widely used Viterbi decoder has 𝑂(𝑁 ×
𝐷2) complexity, where 𝑁 is number of candidates with 

same pronunciations, and 𝐷  is the number of steps. 

Comparing to an English next word prediction task, a 

Japanese conversion task is way more expensive. 

2 JLM Framework 

In this section, an E2E training and decoding framework 

JLM is proposed. It focuses on inference speed up and 

optimization on model size. 

There are various choices for RNN model. We choose 

standard LSTM (Hochreiter and Schmidhuber 1997) as the 

basic benchmark for the improvements. Other architectures 

include text CNN (Kim 2014), char RNN (Karpathy 2015), 

and the char aware LSTM (Kim, Jernite, et al. 2015). 

However, for Japanese language, Kanji char in Unicode is 

much more than the alphabet in English. Seq2seq model 

(Sutskever, Vinyals and Le 2014) can also convert Romaji 

sequence directly to Kanji sequence. But this method lost 

flexibility on error correction from speech recognition 

pipeline or user input. 

A single layer LSTM with the word as a basic unit is still 

a practical choice for a high-performance language model 

as it captures long distance context while not bringing too 

much architecture complexity to the model. 

The word LSTM model can compute the probability 

distribution over vocabulary 𝑉 as follows. For a sentence 
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𝑤0, 𝑤1 , … , 𝑤𝑛  and 𝑤𝑡 ∈ 𝑉 . For each time stamp 𝑡 , 

lookup the input embedding 𝑊𝑖𝑛  ∈  ℝ𝑑𝑖𝑛∗|𝑉|  for word 𝑤𝑡. 

The lookup operation produces the word vector 𝑥𝑡 for 𝑤𝑡 . 

Standard LSTM cell is then applied to update internal state 

as equation(3) 

𝑓𝑡 =  𝜎(𝐻𝑓 ∗ ℎ𝑡−1 + 𝐼𝑓 ∗ 𝑥𝑡 + 𝑏𝑓) 

𝑖𝑡 =  𝜎(𝐻𝑖 ∗ ℎ𝑡−1 + 𝐼𝑖 ∗ 𝑥𝑡 + 𝑏𝑖) 

𝑜𝑡 =  𝜎(𝐻𝑜 ∗ ℎ𝑡−1 + 𝐼𝑜 ∗ 𝑥𝑡 + 𝑏𝑜) 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝐻𝑔 ∗ ℎ𝑡−1 + 𝐼𝑔 ∗ 𝑥𝑡  + 𝑏𝑔) 

𝐶𝑡 =  𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 

𝐻𝑡 =  𝑜𝑡 ⊙ tanh (𝐶𝑡) 

 

 (3) 

where 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 are forget gate, input gate, and output gate 

at timestamp 𝑡. 𝐻, 𝐼, 𝑏 are trainable parameters in the 

LSTM model.  

                𝑦𝑡 =  𝐻𝑡 ∗ 𝑊𝑜𝑢𝑡  (4) 

𝑃(𝑤𝑖|𝑤0, … , 𝑤𝑖−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑡)  (5) 

The hidden state then projects to a |𝑉| size logics with 

output embedding 𝑊𝑜𝑢𝑡  ∈  ℝ𝑑𝑜𝑢𝑡×|𝑉| . And finally, the 

probability distribution is calculated from softmax with 

logits 𝑦𝑡 . To better describe the performance in 

experiments, we name the computation in equation (3), (4), 

(5) as LSTM cell, projection, softmax stages respectively. 

2.1 Embedding optimization 

For standard LSTM, major parameters are the vocabulary 

size embeddings 𝑊𝑖𝑛  ∈  ℝ𝑑𝑖𝑛×|𝑉|  and 𝑊𝑜𝑢𝑡  ∈

 ℝ𝑑𝑜𝑢𝑡×|𝑉| . Reducing the number of parameters in these 

two embeddings can shrinks the generated model size and 

reduces the amount of matrix operations required. 

2.1.1 Embedding sharing 

Similar words with close input embeddings should have 

similar probabilities in next word prediction distribution 

(Press and Wolf 2017). It is a common practice to tie these 

two embeddings together. 

𝑊𝑖𝑛 =   𝑊𝑜𝑢𝑡 (6) 

For the case where 𝑑𝑖𝑛  is 256 and 𝑑𝑜𝑢𝑡  is 512, the 

number of parameters saved is more than a half. 

2.1.2 Variable size embeddings 

Word with low frequency has less appearance and requires 

less information to be captured in word embedding (Chen, 

Grangier and Auli 2015). The words in the vocabulary can 

be divided into different zones regarding to their frequency. 

Each of the zones will use only part of the embedding. The 

algorithm is called differentiated softmax (D-Softmax). 

𝑒 =  𝐻 ∗ 𝑀  

𝑒 =   (𝑒0, 𝑒1, … , 𝑒𝑛) (7) 

𝑦 = (𝑒0 ∗ 𝑊0
, 𝑒1 ∗ 𝑊1

, … , 𝑒𝑛 ∗ 𝑊𝑛
 )  

In projection phase, the hidden state is converted to an 

embedding size vector 𝑒 by 𝑀 ∈  ℝ𝑑𝑜𝑢𝑡×𝑑𝑖𝑛  . The vector 

𝑒 is treated as a concatenation of embeddings of different 

a zone. Low frequency zones are smaller in size and saves 

the time for matrix operation. Note that 𝑊𝑖  ∈  ℝ
𝑑

𝑒𝑖×|𝑉𝑖|
,  

|𝑉| =  ∑ |𝑉𝑖|, and 𝑑𝑜𝑢𝑡 =  ∑ |𝑑𝑒𝑖|. 

 A variation to the differentiated softmax, named D-

softmax* (Grave, et al. 2017) keeps the original embedding 

by projecting each zone with a small matrix as equation 

shows. 

𝑦 = (𝑒 ∗ 𝑃0 ∗ 𝑊0, … , 𝑒 ∗ 𝑃𝑛 ∗ 𝑊𝑛) (8) 

where 𝑒 ∈  ℝ1× 𝑑𝑜𝑢𝑡, 𝑃𝑖  ∈  ℝ
 𝑑𝑜𝑢𝑡×𝑑

𝑒𝑖 . We compared the 

performance of both methods in the experiment. 

2.1.3 Embedding compression 

The trained weights can be further compressed to save 

model size or even runtime memory footprint. Methods 

like network pruning (Wen, et al. 2016) and quantization 

(Chen, et al. 2015) greatly reduce the size of the model 

without loss accuracy for certain tasks. (Shu and 

Nakayama 2017) proposed a method that can compress 

model more than 90% using codebook. It assumes similar 

words do not require the tiny differences in the long vector 

to capture. Any embedding can be approximated with 𝑀 

embeddings in a codebook 𝐶. 

𝑥(𝐶𝑤) = ∑ 𝑥(𝐶𝑤
𝑖 )

𝑀

𝑖=1

 (9) 

Applying this method to language model requires a pre-

trained model to start with. After the embeddings are 

compressed with the codebook, use the original model to 

refine the rest of the parameters. 

2.2 Decoder optimization 

The decoder is a vital part of speech recognition and input 

where observations are decoded from the hidden states. In 

language model, the search space is dominated by the 

different words with the same reading. 

The top 5 readings for Japanese is listed in the following 

table. The search space is too big to be effective for a 

decoder. 

Table 1. Top popular readings in BCCWJ corpus. 

テン マン イチ ニ ゴ 

10228 7173 7161 6117 5813 
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2.2.1 Beam search 

It is common to assume the possible path are from the best 

subpaths. Beam search help regularize the search space to 

O(B × D × N) where B is the beam size. The inference 

required is fixed O(B × D) times. 

2.2.2 Batch decoding 

An important trick in decoding is batching. The underline 

matrix library takes a batch of prediction task just as a 

matrix with one more dimension. Instead of doing next 

word prediction for each path, concatenate all the 

prediction in the current subpaths will accelerate the speed 

several times. 

3 Experiment 

In this section, we analyzed performance of all the 

optimizations implemented the JLM in detail. 

3.1 BCCWJ Corpus  

BCCWJ 2  (Balanced Corpus of Contemporary Written 

Japanese) is a corpus with various source and represent the 

current written Japanese. The corpus disk vol2 contains a 

segmented format in short unit words. We parsed the 

format and build a lexicon that has each word as 

Display/Reading/POS, e.g. “言語/ゲンゴ/名詞-普通名詞-

一般”. The corpus has 127M tokens and 5.8M sentences. 

It contains 611K words in above definition. The token 

coverage with top frequent words is analyzed as a reference 

to mark unknown words. We choose 50K and 100K top 

frequently used words as the vocab with word embeddings 

in the experiments.  

 
Table 2. Token coverage with selected words 

Selected vocab size Token coverage 

10K 91.0% 

50K 97.3% 

100K 98.7% 

3.2 Experiment setup 

The training is done with TensorFlow in Nvidia 1080 GPU 

card. The trained weights are then dumped. The inference 

performance is measure with numpy on a machine with 

Intel E5 CPU. The matrix operation acceleration relies on 

the underline BLAS library. We believe it is comparable to 

other solution like Eigen with C++. 

For language model evaluation, the standard LSTM 

with a medium size embeddings 256 and hidden size 512 

is chosen as the baseline (LSTM-base). we compared the 

overall performance among the LSTM-base, the shared 

embedding version (Tie-embedding), the differential 

softmax (D-softmax), and the variation of differential 

softmax (D-softmax*). The D-softmax has the 

segmentation to corpus as 12%, 18%, 70%. And the 

                                                           
2 http://pj.ninjal.ac.jp/corpus_center/bccwj/en/ 

embedding sizes are 200, 100, 50 each section accordingly. 

Since the D-softmax has much fewer parameters than 

baseline, we also created a LSTM in small size (LSTM-S) 

with the same number of parameters to D-softmax. 

3.3 Language model evaluation 

 
 

Figure 1. The validation perplexity drops as training epochs. The 

x-axis is the epochs. Numbers in y-axis are perplexity. The 

experiment is done with a 50K vocabulary size. 

 

The experiments show that advanced optimization like 

tie-embedding, D-softmax, and its variation can reach the 

similar perplexity with LSTM baseline. LSTM-S instead 

cannot converge to a low perplexity as others. It proves that 

simply reducing the hyperparameters cannot lead to an 

optimized language model with good perplexity. 

We then tested the inference speed for each model by 

taking the average of 100 times next word prediction. The 

LSTM cell is the recurrent part that computes the next 

hidden state. It is stable for various kinds of vocabulary 

size. Its speed is dominated by the hidden and embedding 

sizes. The projection instead is the most time-consuming 

stage and sensitive to size of vocabulary.  

 
Table 3. Average inference time (ms) for 50K vocab. 

 LSTM-

base 

Tie-

Embedding 

D-

softmax 

D-

softmax* 

LSTM cell 0.535 0.523 0.755 0.426 

projection 9.832 5.168 1.531 1.461 

Softmax 0.8 0.9 0.73 0.66 

Total 11.167 6.591 3.016 2.547 

 
Table 4. Average inference time (ms) for 100K vocab. 

 LSTM-

base 

Tie-

Embedding 

D-

softmax 

D-

softmax* 

LSTM cell 0.507 0.544 0.663 0.419 

projection 18.744 9.708 2.886 3.002 

softmax 0.214 0.16 0.15 0.151 

total 19.465 10.412 3.699 3.572 

40
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65
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The results in the above tables show that increasing the 

vocabulary size will linearly increase the inference time 

cost. With D-softmax, the inference time is about 5-6 times 

faster than baseline. We notice that the D-softmax* has a 

smaller embedding size and outperforms the D-softmax. 

Table 5. Overall comparison of quality and performance. 

 perplexity 

model size 

(mb) 

Inference 

(ms)  

 50k 100k 50k 100k 50k 100k 

LSTM-base 40.8 46.0 156.5 306.7 11.7 19.5 

Tie-emb 40.7 45.9 56.9 107.1 6.6 10.4 

D-softmax 42.6 47.2 22.9 38.1 3.0 3.7 

D-softmax* 42.6 47.3 21.5 36.7 2.5 3.6 

Comp-emb 54.0  10.49    

 

Finally, the perplexity, model size, and inference speed 

are listed together in table 5. The model size can be reduced 

by 86% and 88% for 50K and 100K with D-softmax*. It 

also has a correlation with the inference speed up. The 

embedding compressed experiment (Comp-emb) based on 

Tie-embedding result finally gain a 93% model size 

reduction. However, its perplexity it not yet optimized. It 

is useful for the cases where perplexity can be sacrificed. 

3.4 Evaluation with decoder 

The overall inference speed with the decoder is compared 

between the LSTM baseline and the D-softmax*. We use 

an example sentence “きょうはいいてんき”. It has 10 

frames including a sentence start. 

Table 6. Decoding time comparison in seconds. 

 LSTM-base D-softmax* 

 Batch No-batch Batch No-batch 

Beam 1 1.2 (10) 1.107(10) 0.19(10) 0.2 (10) 

Beam 10 2.1 (10) 9.5 (86) 0.41 (10) 1.7 (86) 

Beam 50 2.4 (10) 47.1 (397) 0.92 (10) 7.8 (397) 

 

The number in the parentheses are the times that 

inference is called. Since batch will make one call each 

frame, the number is constantly 10. An optimized batch D-

softmax* is 50x faster than no-batch LSTM baseline with 

beam width 50. 

4 Conclusion 

The work shows for large vocabulary language model, 

standard RNN model like LSTM is not sufficient for 

product requirements. Optimizations to reduce the final 

projection phase is the key to reduce the cost. Further 

optimization on CPU cache and multi-core parallelism may 

accelerate inference speed more. 
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