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1.Introduction 
With the rapid development of mobile Internet, 
Social apps is becoming more and more 
important. As an indispensable app of 
intelligent equipment, the input method is very 
important and because of the limited size of 
smartphones, the auto-correction function has 
been paid more and more attention by users. 

Currently the most popular Japanese input 
method in touch screen smartphone is flick 
keyboard with kana-kanji convert. As showed in 
Figure 1, kanas and functional keys are assigned 
to 12 keys. Each key expresses 3~5 kanas that 
share generally the same consonant 
corresponding to one line in the gojūon order. A 
user is supposed to enter a kana with vowel “a” 
by tapping the key face, and rest kanas of the 
same gojūon line by swiping to certain direction 
for sub-keys. Although flick keyboard has 
bigger key face size than QWERTY keyboard, 
the combination of tapping and swiping makes 
errors happen more frequently. The probability 
of kana error is near to 10% per word according 
to volunteers’ feedbacks，most of which are 
substitution errors. The substitution could be 
any combination of neighboring keys and are 
too hard to be enumerated by hand-written 
rules.  

	
Figure 1: The most popular Japanese Input Method 

Auto-correction [1] has been proposed 
very early, with the purpose to find the users’ 
errors and correct them. Edit distance [2] is still 
widely used today. This algorithm is simple and 
easy to understand. For example, if you type 
“あ” but truly to have “か”, the substitution will 
analyze the probability 𝑝(か|あ) which can be 
trained from corpus. But the performance is not 
very good because of few features. [3] adopted 
machine learning in spelling correction, but it 
only applies to search engines.  

Fortunately, we found that most of the 
substitution errors fall into two categories. One 
is by tapping on or swiping to a wrong key, and 
the other is by taking a tapping operation as a 
swiping one or vice versa. Therefore, the 
auto-correction problem consists of two parts. 
Firstly, given a sequence of touch operations 
that may contain substitution error, the most 
likely button sequence should be identified. 
Secondly, a series of kana sequences with 
probability should be generated based on the 
button sequence. To address this problem, we 
exploit the characteristics of touch screen 
interaction and propose a probabilistic model 
for flick keyboard auto-correction. 

2. Methods 
The GMM-LR-LM model is proposed to solve 
this problem. GMM (Gaussian Mixture Model) 
is used to map the input touch sequence to the 
button sequence set. LR (Logistic Regression) 
is used to map the button sequence to the kana 
sequence and the LM (Language Model such as 
N-gram) is used to adjust the final probability of 
kana sequence.  
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Figure 2: The framework of the proposed method 

The paper framework is showed in Figure 
2, which can be divided into three parts: 
Preprocessing, Correction Model and LM. In 
the first part, the raw touch sequence data is 
extracted as a feature vector and normalized to a 
standard one. The correction work in done in 
the second part and the third part deals with 
LM. 

2.1. Preprocessing 

2.1.1 Feature representation 
In order to predict kana exactly, features are 
collected such as touch point coordinate (𝑥, 𝑦) 
and touch duration. Different feature 
combinations are used in different models. 
Generally, a touch point can be represented as, 

𝑣 = 𝑥, 𝑦, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 1 	
The representation of a flick track only 

consider a start point v5 and an end point v6, 
which is shown as, 

𝑒 = 	𝑣8, 𝑣9 2 	

2.1.2 Normalization 
As we know, smartphone screen resolution 
varies and the inputs scale differently. But they 
can be normalized to a standard one according 
to the keyboard width and height. 

𝑥, 𝑦 =
𝑥;9<=
𝑤𝑖𝑑𝑡ℎ ,

𝑦;9<=
ℎ𝑒𝑖𝑔ℎ𝑡 3 	

where (𝑥;9<=, 𝑦;9<=)	 is the real data 
coordinate; (width, height)  are the keyboard 
width and keyboard height.  

Different features have different units. In 
order to make the model training more efficient, 
continuous features are normalized by the 

formula below, where 𝑢, 𝜎 are the mean and 
standard deviation of feature 𝑓. 

𝑓K =
𝑓 − 𝑢
𝜎 4 	

2.2 Correction Model 
In our correction model GMM-LR, for a given 
touch sequences 𝐸 = 𝑒O𝑒P, … , 𝑒R, the output is 
to generate a number of kana sequences 
𝐶T = 𝑐O𝑐P, … , 𝑐R with probability 𝑝(𝐶V|𝐸). We 
assume that each type activity is independent, 
then we get, 

𝑝WRR=; 𝐶V 𝐸 ≈ 𝑝WRR=; 𝑐V 𝑒V 5 	

𝑝WRR=; 𝑐V 𝑒V = 𝑝WRR 𝑏V|𝑒V 𝑝=; 𝑐V 𝑒V, 𝑏V 6 	
where, p]^^ bT|eT  is the probability of 

button bT  and p`a cT eT, bT  is the conditional 
probability of kana cT based on bT. Both will 
be discussed in details below. 

2.2.1 GMM: Probability of buttons. 
Given a start point feature vector 	v,	 the 
probability of button 𝑏V is denoted as 𝑝(𝑏V|𝑣). 
In flick keyboard, we assume that the touch 
point coordinates of the button follow a two 
dimensional Gaussian distribution which proved 
by the stat of button “あ” from volunteers’ 
feedback, as shown in Figure 3. 

	
Figure 3: The button touch coordinates  

Therefore, GMM [4] with K Gaussian is 
adopted in our model, where K=12 according to 
the flick keyboard. The probability of vector 𝑣 
can be formulated as below, 

𝑝 𝑣 = 𝜙V𝑁 𝑣|𝑢V, 𝛴V

f

VgO

7 	
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𝑁 𝑣|𝑢V, 𝛴V =
𝑒𝑥𝑝 − 𝑣 − 𝑢V i𝛴jO(𝑣 − 𝑢V)

2
2𝜋 𝛴

8 	

The parameter 𝜙V is the weight of every 
Gaussian distribution and 𝑢V, 𝛴V are the mean 
and variance of Gaussian distribution. 	For a 
new given v, the probability of 𝑝 𝑏V 𝑣 	can be 
formulated as,  

𝑝 𝑏V 𝑣 =
𝜙V ∗ 𝑁 𝑣 𝑢V, 𝛴V
𝜙n ∗ 𝑁 𝑣 𝑢n, 𝛴nf

ngO
9 	

2.2.2 LR: conditional probability of kanas 
Given a flick track 𝑒 , it is a key point to 
determine the input is a tapping or a swiping. 
The flick track can be represented as a vector in 
the formula (1). 

This problem can be modeled as a binary 
classification. LR [5] is adopted in the part. 

𝑝=; 𝑒 =
1

1 + 𝑒𝑥𝑝 −𝑤 ∗ 𝑒 10 	

W is the parameters in LR model. The 
output 𝑝=; 𝑒  can be regard as the swiping 
probability, and thus typing probability is  
(1 − 	𝑝=; 𝑒 ). 

	
Figure 4: the swiping axis 

After we get the probability of swiping, 
which should be assigned to the four direction 
kanas. It can be measured by the similarity of 
vectors. As the Figure 4 shows, the −1, 0 ,
0, 1 , 1, 0 , (0, −1) can be used to represent 

the left, up, right and down direction vector 
while (x6 − x5, y6 − y5) is the flick direction 
vector. Then the conditional probability 
assignation can be formulated as below,  

𝑝 𝑐V 𝑒, 𝑏 = 𝑝=; 𝑒 ∗
𝑒𝑥𝑝t9VWuvw

𝑒𝑥𝑝t9VWuvxy
ngO

11 	

The weightT	is determined by the angle θT 

between the flick direction and corresponding 
axis direction.  

𝑤𝑒𝑖𝑔ℎ𝑡V =
								0																									𝑖𝑓	𝜃V >

𝜋
2	

𝑐𝑜𝑠𝑖𝑛𝑒 𝜃V 																𝑒𝑙𝑠𝑒	
12 	

2.3 Language Model 
Through the above model， the touch point 
sequences 𝐸  are converted to the 	 kanas 
sequences 𝐶V = (𝑐O, 𝑐P, … 𝑐R) with probability 
𝑝WRR=; 𝐶V|𝐸 . But in fact, the kanas itself are 
not independent. The relations of kanas show in 
the Figure 5, 

	
Figure 5: Language model of kanas 

So we can build the transition probability 
model between kanas，and use this model to 
optimize the probability. A character-level 
N-gram language model for kana is calculated 
below, 

𝑝 𝐶V = 𝑝 𝑐V 𝑐Vj��O, … , 𝑐VjO

Rj��O

VgO

13 	

The final model GMM-LR-LM can be 
seen as a linear combination of Language model 
and Correction model. The probability kana 
sequence p CT E  is formulated below,  

𝑝 𝐶V 𝐸 = 𝛼𝑝WRR=; 𝐶V 𝐸 +
1 − 𝛼 𝑝�W;<R 𝐶V 	 14 	

Finally， we can search the words in 
dictionary according to the kana sequence. The 
model will generate more different kana 
sequences, and every sequence has a proper 
probability. These probabilities can affect the 
order of words.  

3 Experiment 

3.1 Data and Evaluation  
The training dataset is constructed from 
volunteers’ feedbacks. An entry consists of the 
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raw input trajectory and the original button that 
the keyboard recognizes. 101K entries are used 
to train the GMM-LR model. Regarding the test 
dataset, we invited a group of colleagues to 
input specified sentences in hiragana by 
conventional flick keyboard. If input error 
happens, they are asked to keep it. Finally 5350 
entries are collected for test dataset，including 
510 wrong entries. 

The test set of data are mapped to the same 
keyboard layout input method, according to the 
auto-correction model of the input method, 
combined with the language model, calculate 
the correct entry number of words and wrong 
correct entry number. In fact, we only pay 
attention on the first candidate from input 
method applications. So if one case is good, the 
first candidate must equal to the target, else this 
case is bad. The evaluation measure is 
conventional Recall, Precision and F-score. 

3.2 Experiment and Result 
In Correction model, the conventional EM 
algorithm is used to train the GMM model and 
K is set to 12 in MM. LR learning algorithm is 
SGD, and the loss function is cross-entropy. 
N-gram is set to 3. 

Table 1: The result of the contrast experiment 

 Recall Precision F-score 

Third-Party 58.8% 93.75% 72.3% 

Rule-based 19.6% 90.5% 39.2% 

GMM-LR-LM 72.5% 94.8% 82.2% 

This table shows that GMM-LR-LM 
improves the correction obviously. Comparison 
to the traditional rule-based method, the recall 
rate and F-score have been improved greatly, 
the accuracy also has a certain promotion. 
Meanwhile, compared with the third-party input 
method (tens of millions of users), the 
indicators of new auto-correction model are 
better, but the method of the third-party input 
method is not published. However, the wrong 
rate is still above 5%，these errors affect the 
user experience very much. We need to consider 
more advanced models to improve accuracy and 
recall. 

In the model, some of the features are 
assumed to be independent, ignoring their 
internal relations, but in practice this is not good 
assumption. Therefore, more advanced models 
can be considered and the potential 
relationships between these features can be 
constructed. For example, the GMM model and 
the LR are calculated separately and can be 
combined into a higher-dimensional GMM. In 
addition，the features are manually selected, we 
can consider using deep learning models [6] to 
introduce more hidden features. 

4 Conclusion 
In this research，we propose the GMM-LR-LM 
auto-correction model for flick keyboard input. 
The model adopts features originated from 
touch screen interaction and context features 
from language model to perform error 
correction. The performance of auto-correction 
has been greatly improved. Our future work will 
continue to optimize the model and to learn the 
local self-adaption of auto- correction. 
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