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1 Introduction 

Understanding million level users’ psychological emo-
tions through machine learning techniques remains as 
a fundamental challenge for developing open domain 
free chatting oriented emotional chatbots, such as 
Rinna (Wu et al. 2016), a chat-oriented artificial intel-
ligence (AI) character who is designed to be a senior 
high school girl. The major obstacles that this paper 
tries to deal with include: 
(1) Existing benchmark data sets with three emotional 

categories of “positive”, “negative”, “neutral” or 
further with “strong positive” or “strong negative” 
are deficient to describe real application scenarios 
of chatting with chatbots. The difficulties include 
how to define the emotion taxonomy to better 
cover people’s dominant sentiment feelings and 
consequently how to prepare a large-scale training 
data making use of the defined emotion category 
taxonomy; 

(2) Spoken languages are mainly used during users’ 
conversations with chatbots. Ambiguous bounda-
ries of emotional words reduce the final accuracy 
of sentiment analysis (SA) models. However, it is 
not trivial for building a word segmentation model 
for spoken languages such as Japanese and Chi-
nese to cover the wildly used abbreviations, 
emoji/kaomoji, and informal words; 

(3) Speech and facial images play also very important 
roles for emotion expressing and transferring dur-
ing real human’s conversations. It will be interest-
ing to simultaneously consider emotional signals 
from voices and facial images when building a 
text-oriented SA model. 

In this paper, we borrow the emotion taxonomy 
from the emotion API for classifying facial image, 
which is a part of Microsoft’s cognitive service1. In the 
taxonomy, eight dimensions are used to describe facial 
images’ fine-grained emotions: 

1. "happiness": "喜び", for example, “好きだから
りんなさん”/Rinna, that is because I like you, “俺は
可愛いと信じてる!”/I believe that I am cute. 

                                                
* Work done when Kikura was an internship student in Microsoft. 
1 https://www.microsoft.com/cognitive-services/en-us/emotion-api  

2. "surprise":"驚き", for example, “台風がすご
い”/The typhoon is shocking, “うぇ!?ほんとです
か?”/what?! Really? 

3. "anger": “怒り”, for example, “お前無視すんな
よ”/How dare you ignore that, “面白くないは、(怒
る)”/it’s not interesting, (angry). 

4. "disgust":"嫌悪", for example, “別にお前に嫌
われたっていいし”/I do not care that I am disgusted 
by you, “思ったより君頭悪いね”/You are more stu-
pid than I expected. 

5. "sadness": "悲しみ", for example, “いやだ。泣
きたい。”/it’s disgusting and I am feeling crying, “毎
日が悲しくなる”/I am feeling sadder every day.  

6. "contempt": "軽蔑", for example, “AIちょっと
軽蔑してるよ”/AI is despising me, “コンピュータ
のくせに, 威張ってんじゃねーぞ”/only a computer 
cannot be that swagger. 

7. "fear": "恐怖", for example, “今から? 怖い番組
があるで?”/from now on, there will be a scary TV pro-
gram!?, “怖い話 10回続けて言って”/say scary sen-
tences 10 times. 

8. "neutral": “中性”, for example, “明日のスケジ
ュールが決めました”/Tomorrow’s schedule is deter-
mined, “来週の東京の天気を知りたいです”/I want 
to know next week’s weather of Tokyo.  

Through borrowing this emotion category set from 
facial image classification, we hope to build a bridge 
between SA of facial images as well as texts which fur-
ther have a deep connection with speech. Another rea-
son of using this category set is that our emotional chat-
bot is intended to take care of users’ detailed negative 
emotions rather than positive emotions. In the 8 labels, 
“happiness” is the only positive emotion and there are 
six types of negative or relatively negative emotions 
except “neutral”.  

After determining the y set in our SA model, we col-
lect large-scale training data in the form of <x, y> start-
ing from seed emotional lexicons (with emoji/kaomoji 
and emotional words included) and seed sentences. 
Each x here is a sentence that includes a sequence of 
characters. The details will be described in Section 2.  
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Then, we tackle the word segmentation obstacle by 
adopting a Recurrent Convolutional Neural Network 
(RCNN) proposed by Kim et al. (2016) that directly 
takes sequences of Japanese characters as inputs and 
then use a convolutional function to automatically ex-
tract the n-gram characters as representations of 
word/phrase features. We further use a recurrent layer 
that accepts the features from the convolutional layer 
and embed the whole sentence in a character order sen-
sitive way. The output layer is a softmax layer that 
maps dense vector representations from the recurrent 
layer to the eight emotional dimensions. The details 
will be described in Section 3.  

We finally express our experiments and illustrate 
the usage of the SA model to a real-word emotional 
chatbot, Rinna, who is communicating with more than 
five million friends. 

2 Training Data Collection 

We depict our training data collection pipeline in Fig-
ure 1. In order to construct a large-scale <text, emotion 
category> training data, we make use of two seeds to 
obtain large-scale training data. 
   First, we expand seed emotional words by using 
word2vec (Mikolov et al. 2013) and bilingual word 
alignment table (Brown et al. 1993). Using word2vec, 
we can obtain a high similarity score for two words that 
share quite similar context information. However, one 
problem is that words such as “black” and “white” will 
have a relatively high similarity score since they both 
are adjective and are used to modify the color of an ob-
ject. We thus further make sue of bilingual word align-
ment table for further collecting and pruning the ex-
panded seed emotional words.  
   Second, we manually collect emoji/kaomoji of these 
eight emotion categories from the Web and then ap-
pend these emoji/kaomoji into the seed lexicon.  

   In Figure 1, an example of taking a seed word “悲し

み/sadness” for word2vec word extension is shown. 

The cosine function similarity scores are also com-

puted. For example, the word “悲しみ/sadness” and 

“哀しみ/sorrow” has a cosine similarity score of 0.69 
(the larger the score, the closer their semantic mean-
ings). As former mentioned, word2vec is not guarantee 
that the result words are share a “similar” meaning with 

the seed word of “悲しみ/sadness”, such as bad cases 

of “永遠/forever” and “喜び/happiness”. To alleviate 
this problem, we leverage bilingual word alignment ta-
ble to remove these bad cases. That is, after this 
word2vec word extension, we further make use of Jap-
anese-to-English word alignment table for finding 

English words that are aligned with “悲しみ/sadness”.   
For example, we found four words, which are “sad”, 
“unhappy”, “sorrowful”, and “pathetic”. Then, we use 
the word alignment table in another direction of from 
English to Japanese to obtain Japanese words for each 

English word. All these Japanese words will form an-
other word list. We finally use an “interaction” opera-
tion to the word list from word2vec and from word-
alignment. The result word list will be appended to 
“Seed word lexicon”.  
    At the same time, we manually collect emoji/ka-
omoji from the web and then append them to the “seed 
word lexicon” as well. Emoji and Kaomoji examples 
of the eight categories are illustrated in Figure 1 as well. 
The result “seed word lexicon” will be used to find sen-
tences that contain at least one seed word in the web 
data. We can obtain a large-scale training data in the 
form of <text, emotion category> through this way. 
Consequently, we can use of the yielded emotional lex-
icon and training data to build <voice, emotion cate-
gory> for the final task of voice emotion classification. 
    However, it is risky to use maximum length match-
ing style methods to collect the final large-scale train-
ing data using the seed word lexicon. For one reason is 
about the “not”-series words which switch the original 
emotion into a contrary direction. For another reason is 

 
Figure 1. Pipeline for training data collection. 

 

Seed words of the 8 dimensions, such as “悲しみ/sadness” 

Word2vec synonym ex-
tension: 

Cosine Synonym 
0.69 哀しみ/sorrow 
0.67 悲しい/sad 
0.67 苦しみ/suffering 
0.65 永遠/forever 
0.65 憎しみ/ hate 
0.63 かなしみ/sorrow 
0.62 喜び/happiness 
0.62 悲し/sorrow 

Word alignment based synonym ex-
tension and error correction: 

悲しみ 

sad 
unhappy 
sorrowful 
pathetic 

不幸な; 不運な 
不幸な; 不運の; 不吉な 
悲しむ; 悔やむ 
哀れな; 苦しみ Japanese to 

English word 
alignment English to Japanese 

word alignment 

Manually collected emoji and 
kaomoji: 

happy: o(^▽^)o ヾ(*´∀｀*) 
anger: (ˇдˇ) (*`o∩o怒) 
fear: ((((;´･ω･`))) ( º́ωº｀) 
contempt: (-＿-)  (´－｀) 
sad: ＞＜  (つ д⊂) 
surprise: ( °o°)  ( ﾟ艸ﾟ；) 
disgust: (/ω＼*)  (*/-＼*) 
neutral: <(‥)> <(><;)> <(‥)> 
<(><;)> (腹筋運動)/Abdominal 
muscle movement 

Seed word lexicon 

Intersection 

Web data 

Training data 

Manually annotated <x, y> with 1,000 instances per category 

Simple classifier 

2 1 
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that one sentence can contain both positive words and 
negative words in a mixture way such as “praise first 
and then criticize” or “criticize first and then praise”. 
In order to alleviate these problems, we manually an-
notate a seed training data with 1,000 instances per cat-
egory. For the “neutral” category we do not annotate it 
since the instances can be easily yielded by collecting 
the sentences that do not have any emotional words or 
emoji/kaomoji inside it. 
    We consequently train a simple classifier that uti-
lizes n-gram character language model features. The 
classifier make a secondary judgement to the web data 
pre-filtered by the seed word lexicon. The sentences 
that have a relatively high confidence probability will 
be finally appended to our training data set (also refer 
to the bottom side of Figure 1). 

3 Character-level RCNN 

The character-level RCNN language models (Kim et al. 
2016) were verified to be able to encode, from charac-
ters only, both semantic and orthographic information. 
Figure 2 depicts the architecture overview in which we 
customized the structure for our task’s usage. First, 
each character in sentence are converted into dense 
vector spaces alike bag of words neural language mod-
els. Next, convolution neural network (CNN) initially 
described in (LeCun, 1989) converts them with various 
kernel sizes. Then the vectors are transferred to the re-
current neural network (RNN) layer in which long-
short term memory (LSTM) units are employed. Fi-
nally, aiming at solving the problem described in this 
paper, the states of RNN are regarded as feature vectors 
and are passed to the softmax layer for multiple cate-
gory emotion classification. 
    Note that the major merit of the architecture is that 
the recurrent layer takes the output from a single-layer 
character-level convolutional neural network with 
max-over-time pooling as input. LSTM (Hochreiter 
and Schmidhuber 1997) addresses (1) the learning of 
long distance dependencies and (2) the gradient van-
ishing problem by augmenting the traditional RNN 
with a memory cell vector ct ∈ℝn at each time step. For-
mally, one step of an LSTM takes as input xt, ht-1, ct-1 
and produces ht, ct via the following intermediate cal-
culations: 

it = σ(Wixt + Uiht-1 + bi), 
ft = σ(Wfxt + Ufht-1 + bf), 
ot = σ(Woxt + Uoht-1 + bo), 
gt = tanh(Wgxt + Ught-1 + bg), 
ct = ft ⊗ct-1 + it⊗gt, 
ht = ot ⊗tanh(ct). 

Here σ(.) and tanh(.) are the element-wise sigmoid and 
hyperbolic tangent functions, ⊗ is the element-wise 
multiplication operator, and it, ft, ot respectively denote 
input, forget, and output gates. When t = 1, h0 and c0 
are initialized to be zero vectors. Parameters to be 
trained of the LSTM layer are matrices Wj, Uj, and the 
bias vector bj for j∈{i, f, o, g}. 

 
Figure 2. Architecture of our character-level RCNN with 

three major layers drawn. 
 
    CNNs have achieved state-of-the-art results on com-
puter vision tasks such as the ImageNet shared tasks 
and have also shown to be effective for various NLP 
tasks (Collobert et al. 2011). Since NLP tasks’ inputs 
are one dimension word orders instead of 2D images, 
the CNN architectures employed for NLP applications 
differ in that they typically involve temporal rather 
than spatial convolution functions. Let Q∈ℝd*|V| be the 
character embedding matrix with d being the dimen-
sionality of character embedding and V being the char-
acter vocabulary set. Suppose that word w = c1, …, cl 
with l characters. Then, the character-level representa-
tion of w is given by a matrix Cw∈ℝd*l, where the j-th 
column corresponds to the character embedding for cj 
which is further the cj-th column of Q. We apply a nar-
row convolution between Cw and a filter (or convolu-
tional function) H∈ℝd*f of width f (Figure 2 shows ex-
amples of f = 3, 5, 7 and we further used f = 9 in our 
experiments), after which we add a bias and then apply 
a nonlinearity to obtain a feature map fw∈ℝl-f+1. Specif-
ically, the i-th element of fw is given by: 

fw[i] = tanh(<Cw[*, i:i+f-1], H> + b), 
where Cw[*, i:i+f-1] is the i-to-(i+f-1)-th column of Cw 
and <A, B> = Tr(ABT) is the Frobenius inner product. 
Finally, we take the max-over-time pooling result, 

yw = maxifw[i] 
as the feature corresponding to the filter H (when ap-
plied to word w). The idea behand is to capture the most 
“important” feature (i.e., a character n-gram) where the 
size of the feature corresponds to the filter width f. Sup-
pose we have a total of h filters H1, …, Hh, then yw = 
[y1

w, …, yh
w] is the representation of word w. 

 

こ ん に ち は 。 今 日 は 良 い 天 気 で す ね 。/ 
Good afternoon. It’s such a nice weather today. 

Character embedding 

Convo-
lutional 
layer 

Recurrent layer 

⋯ ⋯ 
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4 Experiments 

Category Number Ratio AvgLen 

Happiness喜び 956,007 56.2% 24.9 

Surprise驚き 42,322 2.5% 26.2 

Anger怒り 51,065 3.0% 27.1 

Disgust嫌悪 4,748 0.3% 23.9 

Sadness悲しみ 562,945 33.1% 25.7 

Contempt軽蔑 42,775 2.5% 25.1 

Fear恐怖 41,039 2.4% 31.7 

Table 1. Statistical Information of the training data. AvgLen 
stands for the average character number per sentence. 

 
We use 1.5-year Japanese twitter data as the “Web 
data” (Figure 1). For training a word2vec model with 
200 dimensions, we use the Japanese Wikipedia and 
Bing’s large-scale queries. The total data is 80GB with 
a vocabulary size of 7.3 million. We used an in-house 
CRF-style word segmentation model. We manually 
collected more than 1,000 emoji/kaomoji for each of 
the 7 categories except the “neutral” category. The sta-
tistical information of the final training data is given in 
Table 1. Note that the positive category “happiness” 
takes a share of 56.2% which is larger than the ratio of 
all the other six categories. We further randomly sam-
ple a “neutral” category data from the rest of the “Web 
data” with a size of 1 million sentences. We take a 
9:0.5:0.5 separating of the data for training/validat-
ing/testing. Table 2 shows that Char-RCNN model is 
significantly better (+4.0%, +7.9%) than two baseline  

 
Figure 3. Feature space visualization by PCA. 

Models Accuracy 
n-gram (n = 3) + SVM 0.844 
Word2vec + RNN + softmax 0.805 
Char-RCNN 0.884 

Table 2. SA accuracy Comparison. 
 

word-level systems. We also find that the n-gram fea-
tures under SVM performs better than a vanilla RNN 
model taking word2vec embedding matrix as input and 
softmax as the output layer. Figure 3 depicts Char-
RCNN’s feature space visualization by PCA. In the 
two figures, “neutral” and other categories are sepa-
rated into two major groups. The interesting part is that 
there is a gradually vertical distribution from “happi-
ness”, to “surprise”, “anger”, “disgust”, “sadness”, 
“contempt” and finally to “fear”. Meanwhile, “happi-
ness” is close to “surprise” yet far from “fear”. Finally, 
we replace the 3-category SA model by this model in 
our ranker of Rinna, trained using gradient boosting de-
cision trees (Wu et al. 2016). The accuracy improves 
from 76.0% to 76.7% which is especially effective for 
the emotional portion (20%) of the ranker’s test data. 

5 Conclusion 

We have proposed an eight-dimension oriented SA 
system for emotional chatbots. We described the pipe-
line of large-scale training data collection and the ar-
chitecture of the character RCNN classifier adopted 
from character-level RCNN language models (Kim et 
al. 2016). Experimental results shew that our SA model 
significantly outcomes the word-based SA models 
which suffer from Japanese word segmentation prob-
lem of spoken language. In the future, it will be inter-
esting to investigate the combined training of joint SA 
models for both facial images and texts using training 
data such as movie frames with subtitles.   
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