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Abstract
Developing a system that can automatically re-
spond to a user's utterance has recently become 
a topic of research in natural language pro-
cessing. However, most works  in the field take 
into account only a single previous utterance to 
generate a response. Recent works demonstrate 
that the application of statistical machine trans-
lation (SMT) towards monolingual dialogue 
setting has a great potential, and we exploit the 
approach to explore the context-dependent re-
sponse generation task.  We attempt to extract 
relevant and significant information from the 
wider contextual scope of the conversation and 
incorporate it into the SMT techniques. We also 
discuss the advantages and limits of this ap-
proach through our experimental results.

1 Introduction
With the advent of Siri and Google Now, conversational 
agent systems have become a ubiquitous application 
that is not only useful for entertainment or task-specific 
purposes but also as a general user-assistance applica-
tion. While such commercial systems have proven to be 
a useful tool, they are not without drawbacks. Most sys-
tems generate a response solely based on the single pre-
vious utterance, failing to take into account the overall 
context of the conversation, or significant information 
from the past utterances. 
   Some recent works have approached the task from a 
different angle with the application of SMT techniques 
into the task, often with various goals and moderate suc-
cess (Ritter et al. 2011, Hasegawa et al. 2013). How-
ever, such attempts also fail to take into account the 
overall context throughout the conversation, and often 
display unreliable alignments between source and target 
sentences, especially when the source sentences are 
shorter than target sentences.
   We attempt to implement a context-dependent model 
where we try to balance the alignment by adding the se-
mantically critical words from previous utterances to the 
most recent statement. By doing so, we hope not only to 
generate more reliable alignments, but also to be able to 
take semantics from broader scope of the conversation 

into account.

2 Response Generation using SMT
To our knowledge, Ritter et al. (2011) made the first at-
tempt to apply SMT techniques into monolingual dia-
logue setting for the response generation task, and our 
baseline model follows the approach described in the 
paper. In SMT, a string f in a source language is trans-
lated into a string e in a target language according to 
probability distribution p(e|f). However, the paper re-
marks the frequently observed structural resemblances 
in stimulus-response pairs of the same language, as in 
the following example, and treats the response as the 
translation of the stimulus. 

Stimulus: What is your name?
Response: My name is Andrew.

Of course, there are far more cases where syntactic 
structures between stimuli and responses differ greatly, 
but the results show that their high semantic correlation 
frequently leads to desired outputs. 
  However, the application of SMT into the response 
generation task has some fundamental problems. First, it 
cannot take into account what was previously discussed 
in the conversation. If the most recent statement brings a 
completely new topic, or it has sufficient information in 
itself, then such problem is obscured. In many cases, 
however, the problem is apparent; for example, when 
the source statement is too short, as shown in the fol-
lowing example. The response generated by the baseline 
model to the most recent stimulus in this example is 
“that,” which only mimics the syntactic structure but 
fails to deliver any meaningful content.
(example):

A: Is something going on today?
B: Of course, it's dad's birthday.
A (most recent stimulus) : What?!
B (target) : Oh my, you really didn't know?

   Another problem is with the alignment. Conversation-
al setting obviously does not guarantee that a source 
sentence and a target sentence are of similar lengths. As 
in the example above, unbalanced lengths between 
source and target sentences cause many words to be 
aligned to an empty word. As a result, neither Hidden 
Markov Model nor IBM Model can stably handle the 
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alignment between unbalanced source and target sen-
tences in conversational setting.

3 Context-Dependent Model
We now describe the model we worked on in order to 
deal with the problems discussed in the previous sec-
tion. We observed how source and target sentences of 
different lengths result in poor alignments. We thus 
want to minimize the gap in the sentence lengths and 
make them as equal as possible, while hopefully retain-
ing some of the core semantics from the earlier parts of 
the conversation. Obviously we cannot align multiple 
source sentences with a single target sentence, but we 
can use some semantically relevant tokens to fill in the 
gap. The question is how to determine whether a token 
is of high relevance to the topic throughout the conver-
sation. We rely on the Fisher's exact test for the task, 
which shows strong performance even when the counts 
of words are small.

3.1 Fisher's Exact Test
For each pair of sentences consisting of sentence Si and 
the following sentence Si+1, we compute the p-value 
from the Fisher's exact test for all possible pairs of 
words s  Si and t  Si+1. Fisher's exact test uses hy-
pergeometric distribution to compute the exact probabil-
ity of a particular joint frequency:

In the equation above, C denotes the counts of the word 
in the parenthesis throughout the training data, and N 
denotes the sum of counts for all words. If p-value of 
the test is below the threshold, we add the words to the 
input sentence in the same order they appeared in the 
conversation, avoiding duplications. We experimented 
with different p-values, and observed that sentence 
lengths are most balanced when p-value is .0001. Ap-
plying this method to the stimulus in the example con-
versation from the previous section results in the follow-
ing new stimulus. Parenthesis indicates the newly added 
words from the earlier utterances:

A: (today birthday) What?!
As shown in the equation, Fisher's exact test involves 
many factorials, and thus has traditionally been con-
sidered inappropriate for large sample size, but Moore 
(2004) presents a workaround to make the computation 
feasible (Ritter et al. 2011). We computed the test with 
fast, freely available SciPy module (Jones et al. 2001).

3.2 Discussion
This method clearly breaks down the grammatical integ-
rity of the input sentence, and the alignments will thus 
have much higher focus on semantic co-occurrences of 
tokens rather than structural resemblance of input/out-
put. For that reason, we opted not to use the reordering 

table for our model. 
   By adding the words, we risk confusing the translation 
model and losing grammaticality of the output. How-
ever, we are convinced that it is not to the extent where 
its effects seemingly degrade the performance.
   First, since we opted not to use the reordering table, 
we have higher reliance on the language model for 
grammaticality. This does not affect the grammaticality 
of the output because the language model is constructed 
upon the target language only, in this case the responses 
to the stimuli, which are at least supposed to be gram-
matically correct, albeit with frequent violations due to 
the nature of SNS.
   Second, the newly added tokens are of high relevance 
to each other, so the new input sentence with added 
tokens frequently demonstrates fair semantic coherence, 
despite ungrammaticality. Such semantic relevance is 
often valid when coupled with the target sentence as 
well, so counting the co-occurrences of tokens from 
earlier sentences and tokens in the target string can 
strengthen the semantic ties, which the example in the 
previous section lacked. 

4 Data
Our model was implemented using Moses toolkit with 
KenLM as the language model. We built our training, 
tuning, and test data set from Twitter. First, we collected 
tweets whose ‘in_reply_to_ID’ field was not ‘Null,’ i.e., 
they had a “parent” tweet to whom it replied.  We then 
retrieved the tweets that correspond to ‘in_reply_to_ID’ 
field of the tweets collected in the first step, checked 
their ‘in_reply_to_ID’ field, and recursively collected 
the parent tweets that correspond to it. 
   Further restrictions were necessary. First, we restricted 
each conversation to have between 3 and 10 utterances. 
Also, in Twitter, it is possible to post a reply to one’s 
own tweet. We concluded that this was against the 
nature of our research, and filtered the collected data un-
der a requirement that each consecutive tweets must be 
from different users; in other words, speakers in the 
tweets have to take turns.
   Additionally, we dealt only with alphabetical charac-
ters, filtering out all non-alphabetical characters includ-
ing numerics. Similarly, certain expressions that are 
unique to Twitter have also been filtered out; for ex-
ample, @username and #hashtag.
   Our training data consist of 909,650 pairs of sentences 
for both models, with roughly 9.4M words for the 
baseline model and 11.7M words for our model. Table 1 
shows the average sentence length of training data for 
both baseline and context-dependent models, each again 
divided into source and target parts. Note how the aver-
age sentence length increases in the source language for 
our context-dependent model, while it is identical to that 
of the baseline model for the target language.

C (s)! C (¬ s)! C (t )! C (¬t) !
N !C (s , t )! C (¬ s ,t )!C (s , ¬t ) !C (¬ s , ¬t ) !

.
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Model Source Target

Baseline 10.41 10.28

Context-Dependent 12.87 10.28
Table 1: Average Sentence Lengths for Training Data

5 Evaluation
5.1. Preliminary Experiment 
Our model is supposed to help in cases where a source 
sentence is shorter than a target sentence. It should be 
noted, however, that the relative length of a source sen-
tence in comparison to a target sentence cannot be a cri-
teria for selective application of our model, since we 
will not be able to know what the target response to our 
source sentence will be in a real testing environment. 
Thus, we considered it more practical to determine a 
length n of the source sentence that can be a criterion 
for whether to apply our model.
   We first checked whether there was a relation between 
the source length and the target length. We took 10 
samples with each consisting of 10,000 pairs of the 
source sentence length and the corresponding target sen-
tence length, and computed their regression. In spite of 
sparse distribution and low R2, the regression shows 
consistent tendency to converge roughly at y=0.3x + 7, 
with y being the length of target sentences, and x the 
length of source sentences. This is consistent with the 
average sentence length of the training data, and shows 
that source sentences are shorter than target sentences 
on average when the length of source sentences is less 
than 10.
   We performed a preliminary experiment to confirm 
the criterion length. We requested a human intelligence 
task (HIT) on Amazon Mechanical Turk with 200 mul-
tiple-choice type questions. Each question showed a part 
of conversation randomly chosen from our test data, and 
the workers were required to choose the better response 
from two possible choices, corresponding to responses 
generated by the baseline and our model. Of the 200 
questions, 104 questions had the last statements' lengths 
shorter than 10, 11 questions equal to 10, and 85 ques-
tions greater than 10.
   Figure 1 shows the relation between the source sen-
tence length and the selection rate of our context-de-
pendent model. Up to |S|=10, there clearly is an in-
versely correlated relation, and beyond 10 is without 
any notable pattern. In fact, R2 up to |S|=10 is 0.96, 
which shows a strong correlation.

5.2. Final Evaluation
One of the challenging aspects of the researches on con-
versation is its distinct nature in which there is an ex-
tremely wide range of acceptable candidates to a stimul-

Figure 1: Source Sentence Length vs. 
Selection Rate of Context-Dependent Model

us, unlike usual bilingual translation tasks where there 
are typically pre-set candidates to be referenced with 
high reliability. For that reason, the usual automatic
 evaluation metrics for SMT cannot be used as the 
primary way to evaluate the experimental results in con-
versational setting,  and we resort to human manual 
evaluation as our primary source of evaluation.
   We performed a human evaluation on Amazon Mech-
anical Turk for source sentence lengths limited to less 
than or equal to 10. The evaluation task consisted of 200 
questions and was done by 20 workers. Each question 
was a ranking task in which workers were given a part 
of conversation and were required to rank the responses 
that followed the conversations. For all questions, work-
ers were given three responses; the actual response on 
Twitter, one generated by the baseline model, and one 
by our context-dependent model.
   Table 2 compares our model's performance against the 
baseline model and the actual responses. Fraction is the 
number of choices that ranked our model higher divided 
by the total number of choices made. Mutual agreement 
is calculated by S coefficient. In our case, the mutual 
agreement is in the range of 0.4 to 0.6, which corres-
ponds to moderate agreement. Note that fraction and 
mutual agreement are computed from the total number 
of choices made by the workers, whereas binomial p-
value is calculated with the number of questions for 
which our model performed better, since each question 
is independent of the others.  Overall, the table shows 
that our model was preferred over the baseline model, 
but performed poorly against the actual responses as ex-
pected. Table 3 shows the fraction of each model for 
each ranking and their average rankings. Our model out-
performs the baseline model in higher rankings. Table 4 
features examples of responses generated by each model 
and the actual responses on Twitter, along with their av-
erage ranking in the final evaluation. In all examples 
shown, our model was ranked higher than the baseline 
model, and the last example shows a case where our 
model was ranked higher than the actual response.
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Conversation Response* Rank

A: like youre talking about the stupidest 
things ever. its annoying. 
B: who is this about

1: the ppl behind you 1.15

2: what are they talking about 2.85

3: like i said im takling seriously are you 2

A: It's nearly 11 at night and its still warm
B: where do you live? 
A: uk

1: oh that makes sense 1.3

2: london 2.65

3: i live in london 2.05

A: Making the most of working in this 
weather
B: keeping busy then, yeh? Time to lean, 
time to clean...

1: exactly what Graeme Fergie said although he was so jeal-
ous of our invention

1.95

2: so yeah i like into you 2.35

3: I am working to build it taste like straight 1.7
*1 refers to the actual response on Twitter, 2 is a response generated by the baseline model, and 3 is by context-dependent model.

Table 4: Examples of Responses

vs. Model Fraction Binomial p Agreement

Baseline .555 2.8e-03 .497

Actual .236 1.7e-24 .556
Table 2: Comparison with Baseline Model 
and Actual Responses

Model Rank 1 Rank 2 Rank 3 Avg. 
Rank

Actual .686 .175 .138 1.45

Baseline .137 .389 .551 2.34

Proposed .177 .436 .387 2.20
Table 3: Comparison of Models' Performance 
on Human Evaluation

6 Conclusion & Future Work
As we observed in the experimental results, our context-
dependent model can outperform the baseline model in 
a wider scope of conversations. Although it performs 
poorly against the actual responses, it can occasionally 
outperform them especially when the actual responses 
divert from the topic, or have poor coherence and gram-
maticality.
   One of the improvements is likely to come from at-
tempting different methods to extract the core tokens 
from the past utterances. We consistently relied on the 
Fisher’s exact test throughout the research, but other ap-
proaches may perform better. Alternatively, we may try 
different weight systems depending on the distance 
between the past utterances and the current utterance. 
This follows the intuition that the more previous the ut-
terances are, the less relevant they tend to be to the cur-
rent topic. Another weight may be given to tokens de-

pending on whether it is from the same speaker as the 
current utterance or a different speaker, since it would 
generally make more sense for a particular speaker not 
to repeat him/herself.
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