
言語処理学会 第20回年次大会 発表論文集 (2014年3月) 

A joint inference of deep case analysis and zero subject generation for
Japanese-to-English statistical machine translation
工藤拓 市川宙 中川哲治 賀沢秀人

Google Japan
{taku,ichikawa,tnaka,kazawa}@google.com

1 Introduction

Japanese to English translation is known to be one of the
most difficult language pair for statistical machine translation
(SMT). It has been widely believed for years that the differ-
ence of word orders, i.e., Japanese is an SOV language, while
English is an SVO language, makes the English-to-Japanese
and Japanese-to-English translation difficult. However, sim-
ple, yet powerful pre-ordering techniques have made this argu-
ment a thing of the past (Isozaki et al., 2010b; Komachi et al.,
2006; Fei and Michael, 2004; Lerner and Petrov, 2013; Wu et
al., 2011; Katz-Brown and Collins, 2008; Neubig et al., 2012;
Hoshino et al., 2013).

While many successes of English-to-Japanese translation
have been reported recently, the quality improvement of
Japanese-to-English translation is still small even with the help
of pre-ordering (Goto et al., 2013). We found that there are two
major issues that make Japanese-to-English translation diffi-
cult. One is that Japanese subject and object cannot easily be
identified compared to English, while their detections are the
key process to generate correct English word orders. Japanese
surface syntactic structures are not always corresponding to
their deep structures, i.e., semantic roles. The other is that
Japanese is a pro-drop language in which certain classes of
pronouns may be omitted when they are pragmatically infer-
able. In Japanese-to-English translation, these omitted pro-
nouns have to be generated properly.

There are several researches that focused on the pre-ordering
with Japanese deep syntactic analysis (Komachi et al., 2006;
Hoshino et al., 2013) and zero pronoun generation (Taira et al.,
2012) for Japanese-to-English translation. However, these two
issues have been considered independently, while they heavily
rely on one another.

In this paper, we propose a simple joint inference which han-
dles both Japanese deep structure analysis and zero pronoun
generation. To the best of our knowledge, this is the first study
that addresses these two issues at the same time.

This paper is organized as follows. First, we describe why
Japanese-to-English translation is difficult. Second, we show
the basic idea of this work and its implementation based on
pointwise probabilistic models and a global inference with
an integer linear programming (ILP). Several experiments are
employed to confirm that our new model can improve the
Japanese to English translation quality.

2 What makes Japanese-to-English translation
difficult?

Japanese syntactic relations between arguments and predicates
are usually specified by particles. There are several types of
particles, but we focus onが (ga),を (wo) andは (wa) for the

Table 1: An example of difficult sentence for parsing

Sentence: 今日 は お酒 が 飲める.

Gloss: today wa TOP liquor ga NOM can drink.

Translation: (I) can drink liquor today.

sake of simplicity 1.

• ga is usually a subject marker. However, it becomes an
object marker if the predicate has a potential voice type,
which is usually translated into can, be able to, want to,
or would like to.

• wo is an object marker.

• wa is a topic case marker. The topic can be anything that
a speaker wants to talk about. It can be a subject, object,
location, time or any other grammatical elements.

We cannot always identify Japanese subject and object only
by seeing the surface case markers ga, wo and wa. Especially
the topic case marker is problematic, since there is no concept
of topic in English. It is necessary to get a deep interpretation
of topic case markers in order to develop accurate Japanese-to-
English SMT systems.

Another big issue is that Japanese subject (or even an ob-
ject) can be omitted when they can pragmatically be inferable
from the context. Such a pronoun-dropping is not an unique
phenomenon in Japanese actually. For instance, Spanish also
allows to omit pronouns. However, the inflectional suffix of
Spanish verbs include a hint for the person of the subject. On
the other hand, inferring Japanese subjects is more difficult
than Spanish, since Japanese verbs usually do not have any
grammatical cues to tell the subject person.

Table 1 shows an example Japanese sentence which cannot
be parsed only with the surface structures. The second token
wa specifies the relation between今日 (today) and飲める (can
drink). Human can easily tell that the relation of them is not
a subject but an adverb (time). The topic case marker wa im-
plies that the time when the speaker drinks liquor is the focus of
this sentence. 4th token ga indicates the relation betweenお酒
(liquor) and飲める (can drink). Since the predicate has a po-
tential voice (can drink), the ga particle should be interpreted
as an object here. In this sentence, the subject is omitted. In
general, it is unknown who speaks this sentence, but the first
person is a natural interpretation in this context.

Another tricky phenomenon is that detecting voice type is
not always deterministic. There are several ways to generate a
potential voice in Japanese, but we usually put the suffix word
れる (reru) or られる (rareru) after the predicates. However,
these suffix words are also used for a passive voice.

In summary, we can see that the following four factors are
the potential causes that make the Japanese parsing difficult.

1Other case markers are less often than these three markers
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• Japanese voice type detection is not straightforward. reru
or rareru are used either for passive or potential voice.

• surface case ga changes its interpretation from subject to
object when the predicate has a potential voice.

• topic case marker wa is used as a topic case marker which
doesn’t exist in English. Topic is either subject, object or
any grammatical elements depending on the context.

• Japanese subject is often omitted when it is inferable from
the context. There is no cue to tell the subject person in
verb suffix (inflection) like in Spanish verbs.

We should note that they are not always independent issues.
For instance, the deep case detection helps to tell the voice
type, and vice versa.

Another note is that they are unique issues observed only in
Japanese-to-English translation. In English-to-Japanese trans-
lation, it is acceptable to generate Japanese sentences that don’t
use Japanese topic markers wa. Also, generating Japanese pro-
noun from English pronoun is acceptable, although it sounds
redundant and unnatural for native speakers.

3 A joint inference of deep case analysis and
zero subject generation

3.1 A Probabilistic model over predicate-argument
structures

Our deep parser runs on the top of a dependency parse tree.
First, it extracts all predicates and their arguments from a de-
pendency tree by using manual rules over POS tags. Since our
pre-ordering system generates the final word orders from a la-
beled dependency tree, we formalize our deep parsing task as a
simple labeling problem over dependency links, where the la-
bel indicates the deep syntactic roles between a head and mod-
ifier.

We here define a joint probability over a predicate and its
arguments as follows:

P (p, z, v, A, S,D), (1)

where

• p: a predicate

• z: zero subject candidate for p.
z ∈ Z = {I, you, we, it, he/she, imperative, already exists}

• v: voice type of the predicate p.
v ∈ V = {active, passive, potential}

• ak ∈ A: k-th argument which modifies or is modified by
the predicate2.

• dk ∈ D: deep case label which represents a deep relation
between ak and p.
d ∈ D = { subject, object, other }, where other means
that deep case is neither subject nor object.

• sk ∈ S: surface relation (surface case marker) between
ak and p.

We assume that a predicate p is independent from other
predicates in a sentence. This assumption allows us to estimate
the deep structures of p separately, with no regard to which de-
cisions are made in other predicates.

2Generally, an argument modifies a predicate, but in relative clauses, a

predicate modifies an argument

An optimal zero subject label ẑ, deep cases D̂, and voice
type v̂ for a given predicate p can be solved as the following
optimization problem.

〈ẑ, v̂, D̂〉 = argmax
z,v,D

P (p, z, v, A, S,D)

Since the inference of this joint probability is difficult, we de-
compose P (p, z, v, A, S,D) into small independent sub mod-
els:

P (p, z, v, A, S,D) ≈
Pz(z|p,A, S)Pv(v|p,A, S)Pd(D|p, v, A, S)P (p,A, S). (2)

We don’t take the last term P (p,A, S) into consideration, since
it is constant for the optimization. In the next sections, we
describe how these probabilities Pz , Pd, and Pv are computed.

3.1.1 Zero subject model: Pz(z|p,A, S)

This model estimates the syntactic zero subject 3 of the pred-
icate p. For instance, z= I means that the subject of p is omitted
and its type is first person. z=imperative is internally handled
as an invisible subject. z=already exists means that a subject
already appears in the sentence. A maximum entropy classi-
fier is used in our zero subject model, which takes the features
extracted from p, A, and S.

3.1.2 Voice type model: Pv(v|p,A, S)

This model estimates the voice type of a predicate. We also
use a maximum entropy classifier for this model. This classi-
fier is used only when the predicate has the ambiguous suffix
reru or rareru. If the predicate is a potential verb 4, this model
returns potential with a very high probability.

3.1.3 Deep case model: Pd(D|p, v, A, S)

This model estimates the deep syntactic role between a pred-
icate p and its arguments A. This model helps to resolve
the deep cases when their surface cases are topic. We define
Pd as follows with an independent assumption on predicate-
argument structures:

Pd(D|p, v, A, S) ≈
∏

i

[max(p(di|ai, p)−m(si, di, v), δ)].

p(d|a, p) models the deep relation between p and a. We use a
maximum likelihood estimation for p(d|a, p):

p(d = subj|a, p) =
freq(s = ga, a, active form of p)

freq(a, active form of p)

p(d = obj|a, p) =
freq(s = wo, a, active form of p)

freq(a, active form of p)
,

where freq(s = ga, a, active form of p) is the frequency of
how often an argument a and p appears with the surface case
ga. The frequencies are aggregated only when the predicate
appears in an active voice. If the voice type is active, we can
safely assume that the surface cases ga and wo correspond
to subject and object respectively (Kawahara and Kurohashi,

3Here syntactic subject means the subject which takes the voice type into

account.
4飲む (drink) →飲める (can drink)
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2006). We compute the frequencies from a large amount of
auto-parsed data.

m(s, d, v) is a non-zero penalty variable describing how the
deep case d generates the surface case s depending on the voice
type v. Since the number of possible surface cases, deep cases,
and voice types are small, we define this penalty manually by
reference to the Japanese grammar book (日本語記述文法研
究会, 2009). We use these manually defined penalties in order
to put more importance on syntactic preferences rather than
those of semantics. Even if a predicate-augment structure is
semantically irrelevant, we take this structure as long as it is
syntactically correct 5.

δ is a very small positive constant to avoid zero probability.

3.2 Joint inference with linguistic constraints

Our initial model (2) assumes that zero subjects and deep cases
are generated independently. However, this assumption does
not always capture real linguistic phenomena. English is a
subject-prominent language in which almost all sentences (or
predicates) must have a subject. This implies that it is more
reasonable to introduce strong linguistic constraints to the fi-
nal solution for pre-ordering, which are described as follows:

• Subject is a mandatory role. A subject must be inferred
either by zero subject or deep case model 6. When the
voice type is passive, an object role in D is considered as
a syntactic subject.

• A predicate can not have multiple subjects and objects
respectively.

These two constraints avoid the model from inferring syn-
tactically irrelevant solutions.

In order to find the result with the constraints above, we
formalize our model as an integer linear programming, ILP.
Let {x1, , ..., xn} be binary variables, i.e., xi ∈ {0, 1}. xi

corresponds to the binary decisions in our model, e.g., xk =
1 if di = subj and v = active. Let {p1, ..., pn} be probabil-
ity vector corresponding to the binary decisions. ILP can be
formalized as a mathematical problem, in which the objective
function and the constraints are linear:

{x̂1, ..., x̂n} = argmax
∑

i

log(pi)xi

s.t. linear constraints over {x1, .., xn}.
After taking the log of (2), our optimization model can be con-
verted into an ILP. Also, the constraints described above can
be represented as linear equations over binary variables X . We
leave the details of the representations to (Punyakanok et al.,
2004; Iida and Poesio, 2011).

3.3 Japanese pre-ordering with deep parser

We use a simple rule-based approach to make pre-ordered
Japanese sentences from our deep parse trees, which is similar
to the algorithms described in (Komachi et al., 2006; Katz-
Brown and Collins, 2008; Hoshino et al., 2013). First, we

5We want to regard apple as the subject of the sentence “りんごが食べ
る (apple ga eat)”, although it is semantically irrelevant.

6imperative is also handled as an invisible subject

Table 2: Examples of deep parser output

今日は {d=other}酒が {d=obj}飲める {v=potential, z=I}
ニュースが {d=subj}伝えられた {v=passive, z=already}
ラーメンは {d=obj}食べましたか {v=active, z=you}
あなたは {d=subj}食べましたか {v=active, z=already}

naively reverse all the bunsetsu-chunks 7. Then, we move a
subject chunk just before its predicate. This process converts
SOV to SVO. When the subject is omitted, we generate a sub-
ject with our deep parser and insert it to a subject position in
the source sentence. There are three different ways to generate
a subject.

1. Generate real Japanese words. (Insert 私 (I), あなた
(you).. etc)

2. Generate virtual seed words. (Insert 1st person,
2nd person..., which are not in the Japanese lexicon)

3. Generate only a single virtual seed word regardless of the
subject type. (Insert zero subject)

1) is the most aggressive method, but it causes completely
incorrect translations if the detection of subject type fails. 2)
and 3) are rather conservative, since they leave SMT to gener-
ate English pronouns.

We decided to use the following hybrid approach, since it
shows the best performance in our preliminary experiments.

• In the training of SMT, use 3).

• In decoding, use 1) if the input sentence only has one
predicate. Otherwise, use 3).

For example, “今日 は 酒 が 飲める” is reordered into
“zero subject飲めるが酒は今日” in the training.

3.4 Examples of parsing results
Table 2 shows examples of our deep parser output. It can been
seen that our parser can correctly identify the deep case of topic
case marker wa.

4 Experiments
4.1 Experimental settings
We carried out all our experiments using a state-of-the-art
phrase-based statistical Japanese-to-English machine transla-
tion system (Och, 2003) with pre-ordering. During the de-
coding, we use the reordering window (distortion limit) to 4
words. For parallel training data, we use an in-house collec-
tion of parallel sentences. These come from various sources
with a substantial portion coming from the web. We trained
our system on about 300M source words. Our test set contains
about 10,000 sentences randomly sampled from the web.

The dependency parser we apply is an implementation of a
shift-reduce dependency parser which uses a bunsetsu-chunk
as a basic unit for parsing (Kudo and Matsumoto, 2002).

The zero subject and voice type models were trained with
about 20,000 and 5,000 manually annotated web sentences re-
spectively. In order to simplify the rating tasks for our annota-

7bunsetsu is a basic Japanese grammatical unit consisting of one content

word and functional words.
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Table 3: Examples of training data

Task Input ({{}} is the annotation part.) Output
Zero 彼の優しさに {{感動した }} I
Zero 病院で診察を {{受けるべき }} You
Voice USBが {{認識されない }} Passive
Voice 返品には {{応じられません }} Potential

Table 4: Results for different reordering methods

System BLEU RIBES
baseline (no reordering) 16.15 52.67
surface reordering 19.39 60.30
independent deep reordering 19.68 61.27
independent deep reordering + zero subject 19.81 61.67
joint deep reordering 19.76 61.43
joint deep reordering + zero subject 19.90 61.89

tors, we extracted only one candidate predicate from a sentence
for annotations. Table 3 shows examples of our training data 8.

We tested the following six systems.

• baseline: no pre-ordering.

• surface reordering : pre-ordering only with surface de-
pendency relations.

• independent deep reordering: pre-ordering using deep
parser without global linguistic constraints.

• independent deep reordering + zero subject: pre-
ordering using deep parser and zero subject generation
without global linguistic constraints.

• joint deep reordering: pre-ordering using our new deep
parser with global linguistic constraints.

• joint deep reordering + zero-subject: pre-ordering us-
ing deep parser and zero subject generation with global
linguistic constraints.

As translation metrics, we used BLEU (Papineni et al.,
2002), as well as RIBES (Isozaki et al., 2010a), which is de-
signed for measuring the quality of distant language pairs in
terms of word orders.

4.2 Results
Table 4 shows the experimental results for six pre-reordering
systems. It can be seen that the proposed method with deep
parser outperforms baseline and naive reordering with sur-
face syntactic trees. The zero subject generation can also im-
prove both BLEU and RIBES scores, but the improvements are
smaller than those with reordering. Also, joint inference with
global linguistics constraints outperforms the model which
solves deep syntactic relations and zero subject generation in-
dependently.

5 Conclusions
In this paper, we proposed a simple joint inference of deep case
analysis and zero subject generation for Japanese-to-English
SMT. Our parser consists of pointwise probabilistic models
and a global inference with linguistic constraints. We applied
our new deep parser to pre-ordering in Japanese-to-English
SMT system and showed substantial improvements in auto-
matic evaluations.

8This format allows us to use a spreadsheet to perform annotations.

Our future work is to enhance our deep parser so that it can
handle other linguistic phenomena, including causative voice,
coordinations, and object ellipse. Also, the current system is
built on the top of a dependency parser. The final output of our
deep parser is highly influenced by the parsing errors. It would
be interesting to develop a full joint inference of dependency
parsing and deep syntactic analysis.
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