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Abstract 

We present a new reranking approach for 

dependency parsing that can utilize com-

plex subtree representation by applying 

efficient subtree selection heuristics. We 

demonstrate the effectiveness of the ap-

proach in experiments conducted on the 

Penn Treebank and the Chinese Treebank. 

Our system improves the baseline accu-

racy from 91.88% to 93.37% for English, 

and in the case of Chinese from 87.39% 

to 89.16%. 

1. Introduction 

In dependency parsing, graph-based models are 

prevalent for their state-of-the-art accuracy and 

efficiency, which are gained from their ability to 

combine exact inference and discriminative 

learning methods. The ability to perform efficient 

exact inference lies on the factorization tech-

nique which breaks down a parse tree into small-

er substructures to perform an efficient dynamic 

programming search. This treatment however 

restricts the representation of features to a rela-

tively small context.  

A remedy approach that can explore complex 

feature representations for global information is 

called parse reranking. In its general framework, 

a K-best list of parse tree candidates is first pro-

duced from the base parser; a reranker is then 

applied to pick up the best parse among these 

candidates. Improvements on dependency pars-

ing accuracy have been achieved in (Hall, 2007; 

Hayashi et al., 2011), however the feature sets in 

these studies explored a relatively small context, 

either by emulating the feature set in the constit-

uent parse reranking (Charniak and Johnson, 

2005), or by factorizing the search space. We 

think that the desirable approach for fully utiliz-

ing the power of K-best list reranking is to en-

code features on subtrees extracted from the can-

didate parse with arbitrary orders and structures, 

as long as the extraction process is tractable. It is 

still an open question how to design a process for  

 
Figure 1. A dependency parse tree of the sen-

tence “the man there in coat saw John.” 

 

subtree extraction that is able to selects a set of 

subtrees which provides reliable and concrete 

linguistic evidences.  

In this paper, we explore a feature set that cap-

tures global information with less restriction in 

the structure and the size of the subtrees. It ex-

haustively explores a candidate parse tree for 

features from the most simple to the most ex-

pressive while maintaining the efficiency in the 

sense that it does not add additional complexities 

over the K-best parsing. 

2. Dependency Parse Reranking  

The task of dependency parsing is to find a tree 

structure for a sentence in which edges represent 

the head-modifier relationship between words: 

each word is linked to a unique “head” such that 

the link forms a semantic dependency while the 

main predicate of the sentence is linked to a 

dummy “root”. An example of a dependency 

parse is illustrated in Figure 1. 

We formally define the dependency parsing 

task. Given a sentence  , the best parse tree is 

obtained by searching for the tree with highest 

score: 

 ̃           ( )     (   ) 

Where  ( ) is the search space of possible parse 

trees for  , and   is a parse tree in  ( ).  
Parse reranking is similar with that of parsing 

instead of that the searching of parse tree is per-

formed on a K-best list with selected parse  
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𝑇 𝑖𝑚("s w")  {𝑠  𝑠  𝑠  … } 
 

Figure 2. Extraction of trimmed subtrees from the node “saw”.  “#LEFT”, “#RIGHT” and “#BOT-

TOM” represents the three boundaries that can vary along possible positions on the corresponding axis. 

Contexts   ,    and    represnt three instances of  possible combinations of boundary positions. 𝑠 , 𝑠  
and 𝑠  are resulted  subtrees that are elements in the trimmed subtrees set of the node “saw”. 

 

candidates rather than the entire search space: 

 ̃                ( )      (   )         

               ( )( (   )     (   )) 

Where  (   )  is the score of   output by the 

base parser, and the score of the reranker is given 

by an inner product of a feature vector   and its 

corresponding weight vector  . We define the 

oracle parse    to be the parse in the K-best list 

with highest accuracy compared with the gold-

standard parse. The goal of reranking is to learn 

the weight vector so that the reranker can pick up 

the oracle parse as many times as possible. Note 

that in the reranking framework, the feature is 

defined on the entire parse tree which enables the 

encoding of global information.  

2.1  Feature Sets for Reranking 

We define three types of subtree structures as the 

reranking features below. 

 

Trimmed subtree: For each node in a given 

parse tree, we check its dominated subtrees to see 

whether they are likely to appear in a good parse 

tree or not. To efficiently obtain these subtrees, 

we set a local window that bounds a node from 

its left side, right side and bottom. We then ex-

tract the maximum subtree inside this window, 

means that we cut off those nodes that are too 

distant in sequential order or too deep in a tree.  

This subtree extraction process however often 

results in very large instances which are extreme-

ly sparse in the training data, therefore it is nec-

essary to keep smaller subtrees as back-offs. In 

most cases, however, it is prohibitively expen-

sive to enumerate all the smaller subtrees. In-

stead of enumeration, we design a back-off strat-

egy that select subtrees by attempting to leave 

out nodes that are far away from the subtree's 

root and keeps those that are nearby. Precisely, 

after extracted the first subtree of a node, we 

vary the three boundaries (the left, the right and 

John

saw

.

the

man

inthere

coat

Subtree

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

Context 

Subtree 

saw

man

inthere

John

saw

.

the

man

inthere

coat

#LEFT

#BOTTOM

#RIGHT

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

Context 

Subtree 

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

John

saw

man

Context 

John

saw

.

the

man

inthere

coat

Subtree rooted at node “saw”

…
 

…
 

― 59 ― Copyright(C) 2013 The Association for Natural Language Processing. 
All Rights Reserved.　　　　　     　　 　　　   　　　　　　　　　　 



the bottom boundary respectively) from their 

original positions to positions that are closer to 

the root of the subtree, such that it tightens up the 

local window. For each possible combination of 

the variable boundaries, we extract the largest 

subtree from the new local window and add it to 

the set of “trimmed subtrees”.  

This back-off strategy comes from our obser-

vation that nodes that are close to the root may 

provide more reliable information than those that 

are distant. As it is infeasible to enumerate all 

small subtrees as back-offs, throwing away the 

redundant nodes from the outer part of a large 

subtree is a reasonable choice. 

Sibling subtree: We define the sibling subtree 

structures for reranking as a natural extension of 

the sibling factorization in (McDonald and Perei-

ra, 2006) from the word-based case to the sub-

tree-based case. 

Specifically, for each node 𝑚  in a candidate 

parse, its sibling subtree features is the collection 

of all 3-tuples: 

 〈   (𝑠    𝑖 )  (𝑚    𝑖 )〉  

where h represents the word form, the Part-of-

Speech tag, or the combination of the word form 

and the Part-of-Speech tag of the head node of m; 

s is the nearest sibling node of m in-between h 

and m; and the expression  (    𝑖) represents the 

𝑖   feature encoded on a trimmed subtree in the 

set 𝑇 𝑖𝑚( ), such that the trimmed subtree is the 

one extracted within the local window  . Here an 

important point is that we make use of trimmed 

subtrees extracted in the previous phase. As men-

tioned before, since we keep the history of 

trimmed subtree extraction, it eliminates the need 

to re-compute any subtree structures on the sib-

ling nodes and hence is efficient to encode. 

Chain: A chain type feature encodes infor-

mation for a subtree that each node has exactly 

one incoming edge and one outgoing edge, ex-

cept on the two ends (hence a “chain”). We ex-

tract all these kind of subtrees from a parse tree 

in the candidates list with a parameter set to limit 

the number of edges in the subtree. This type of 

features emulates the common grandparent-

grandchildren structure in dependency parsing, 

while we loosen the restriction on the order of 

the subtree. It functions as a complementary for 

other types of features.   

3. Evaluation 

We present our experimental results on two da-

tasets, the Penn English and Chinese Treebank 

respectively. We convert the constituent structure 

in the Treebank into dependency structure with 

the tool Penn2Malt and the head-extraction rules 

being (Yamada and Matsumoto, 2003) for Eng-

lish and (Zhang and Clark, 2008) for Chinese. To 

align with previous work, for English dataset we 

use the standard data division: section 02-21 for 

training, section 24 for development, and section 

23 for testing. For Chinese, we choose the Chi-

nese Treebank 5.0 with the following data divi-

sion: files 1-270 and files 400-931 for training, 

files 271-300 for testing, and files 301-325 for 

development. As our system assumes Part-of-

Speech tags as input, we use MXPOST, a 

MaxEnt tagger (Ratnaparkhi, 1996) to automati-

cally tag the English test data which is trained on 

the same training data. For Chinese we just use 

the gold standard Part-of-Speech tags in evalua-

tion. 

For the evaluation, we apply unlabeled at-

tachment score (UAS) to measure the effective-

ness of our method, which is the percentage of 

words that correctly identified their heads.  

We trained a second-order sibling-factored 

parser emulating models in the MSTParser de-

scribed in (McDonald and Pereira, 2006) by the 

averaged perceptron algorithm (Collins, 2002) as 

our baseline parser; We chose the algorithm de-

scribed in (Huang and Chiang, 2005) for produc-

ing the K-best list for its efficiency; We used 30-

way cross-validation on the identical training 

dataset to provide training data for the rerankers; 

and we used the following parameter setting for 

the feature sets throughout the experiments: 

K=50; the left, right and bottom boundary for the 

trimmed subtree features are 10, 10 and 5 respec-

tively.  

3.1  Experimental Results  

We show the experimental results for both Eng-

lish and Chinese in Table 1. Each row in this ta-

ble shows the UAS of the corresponding system. 

“McDonald06” stands for the second-order mod-

el in the MSTParser (McDonald and Pereira, 

2006). “Yu08” stands for the probabilistic Chi-

nese parser in (Yu et al., 2008). “Koo10” stands 

for the Model 1 in (Koo and Collins, 2010) 

which is a third-order model. “Martins10” stands 

for the turbo parser proposed in (Martins et al., 

2010). “Baseline” is our duplicated implementa-

tion of “McDonald06” and is used as the base 

parsers for our reranker, denoted as “Reranked” 

in this table. “Baseline+Hall07” stands for the 

baseline parser cascading our implementation of 

the reranker described in (Hall, 2007), which 

adopted a feature set similar with the constituent  
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System English UAS Chinese UAS 

McDonald06 91.5  

Yu08  87.26 

Koo10 93.04  

Martins10 93.26  

Baseline 91.88 87.39 

Baseline+Hall07 91.91  

Reranked 93.37 89.16 

Chen09
+
 93.16 89.91 

Suzuki09
+
 93.79  

Table 1. English and Chinese UAS of previous 

work, our baseline parsers, and reranked results.
  

“
+
”: semi-supervised parsers. 

 

parse reranker (Charniak and Johnson, 2005); we 

add this system for a comparison with our re-

ranking approach. “Chen09” and “Suzuki09” are 

parsers using semi-supervised methods (Chen et 

al., 2009; Suzuki et al., 2009).  

As we can see from the results, for English, 

the accuracy increased from 91.88%(“Baseline”) 

to 93.37%(“Reranked”) for the second-order 

parse reranker. This result is much higher than 

“Baseline+Hall07” which yielded an accuracy of 

91.91% that is only slightly higher than the base-

line. For Chinese, the accuracy increased from 

87.39% to 89.16%. It also shows that our rerank-

ing systems obtain the highest accuracy among 

supervised systems. For English, our reranker 

even slightly outperforms “Martins10”, the turbo 

parser which to the best of our knowledge 

achieved the highest accuracy in Penn Treebank. 

Although our rerankers are beaten by some semi-

supervised systems “Suzuki09” and “Chen09”, 

but as our reranking approach is totally orthogo-

nal with these semi-supervising methods, it is 

promising to further improve the accuracy by 

combing these techniques. 

4. Conclusion 

We have proposed a novel approach for depend-

ency parse reranking that extracts complex struc-

tures for collecting linguistic evidence, and effi-

cient feature back-off strategy is proposed to re-

lieve data sparsity. Experiments have demon-

strated effectiveness of our method, and signifi-

cant improvement over the baseline system as 

well as other known systems have been observed.  
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