
Dependency Parse Reranking Based on Subtree Extraction

Mo Shen, Daisuke Kawahara, and Sadao Kurohashi

Graduate School of Informatics，Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

shen@nlp.ist.i.kyoto-u.ac.jp {dk,kuro}@i.kyoto-u.ac.jp

Abstract

We present a new reranking approach for

dependency parsing that can utilize com-

plex subtree representation by applying

efficient subtree selection heuristics. We

demonstrate the effectiveness of the ap-

proach in experiments conducted on the

Penn Treebank and the Chinese Treebank.

Our system improves the baseline accu-

racy from 91.88% to 93.37% for English,

and in the case of Chinese from 87.39%

to 89.16%.

1. Introduction

In dependency parsing, graph-based models are

prevalent for their state-of-the-art accuracy and

efficiency, which are gained from their ability to

combine exact inference and discriminative

learning methods. The ability to perform efficient

exact inference lies on the factorization tech-

nique which breaks down a parse tree into small-

er substructures to perform an efficient dynamic

programming search. This treatment however

restricts the representation of features to a rela-

tively small context.

A remedy approach that can explore complex

feature representations for global information is

called parse reranking. In its general framework,

a K-best list of parse tree candidates is first pro-

duced from the base parser; a reranker is then

applied to pick up the best parse among these

candidates. Improvements on dependency pars-

ing accuracy have been achieved in (Hall, 2007;

Hayashi et al., 2011), however the feature sets in

these studies explored a relatively small context,

either by emulating the feature set in the constit-

uent parse reranking (Charniak and Johnson,

2005), or by factorizing the search space. We

think that the desirable approach for fully utiliz-

ing the power of K-best list reranking is to en-

code features on subtrees extracted from the can-

didate parse with arbitrary orders and structures,

as long as the extraction process is tractable. It is

still an open question how to design a process for

Figure 1. A dependency parse tree of the sen-

tence “the man there in coat saw John.”

subtree extraction that is able to selects a set of

subtrees which provides reliable and concrete

linguistic evidences.

In this paper, we explore a feature set that cap-

tures global information with less restriction in

the structure and the size of the subtrees. It ex-

haustively explores a candidate parse tree for

features from the most simple to the most ex-

pressive while maintaining the efficiency in the

sense that it does not add additional complexities

over the K-best parsing.

2. Dependency Parse Reranking

The task of dependency parsing is to find a tree

structure for a sentence in which edges represent

the head-modifier relationship between words:

each word is linked to a unique “head” such that

the link forms a semantic dependency while the

main predicate of the sentence is linked to a

dummy “root”. An example of a dependency

parse is illustrated in Figure 1.

We formally define the dependency parsing

task. Given a sentence , the best parse tree is

obtained by searching for the tree with highest

score:

 ̃ () ()

Where () is the search space of possible parse

trees for , and is a parse tree in ().
Parse reranking is similar with that of parsing

instead of that the searching of parse tree is per-

formed on a K-best list with selected parse

ROOT

John

saw

.

the

man

inthere

coat

言語処理学会 第19回年次大会 発表論文集 (2013年3月)
￣￣￣ ̄

― 58 ― Copyright(C) 2013 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

𝑇 𝑖𝑚("s w") {𝑠 𝑠 𝑠 … }

Figure 2. Extraction of trimmed subtrees from the node “saw”. “#LEFT”, “#RIGHT” and “#BOT-

TOM” represents the three boundaries that can vary along possible positions on the corresponding axis.

Contexts , and represnt three instances of possible combinations of boundary positions. 𝑠 , 𝑠
and 𝑠 are resulted subtrees that are elements in the trimmed subtrees set of the node “saw”.

candidates rather than the entire search space:

 ̃ () ()

 ()(() ())

Where () is the score of output by the

base parser, and the score of the reranker is given

by an inner product of a feature vector and its

corresponding weight vector . We define the

oracle parse to be the parse in the K-best list

with highest accuracy compared with the gold-

standard parse. The goal of reranking is to learn

the weight vector so that the reranker can pick up

the oracle parse as many times as possible. Note

that in the reranking framework, the feature is

defined on the entire parse tree which enables the

encoding of global information.

2.1 Feature Sets for Reranking

We define three types of subtree structures as the

reranking features below.

Trimmed subtree: For each node in a given

parse tree, we check its dominated subtrees to see

whether they are likely to appear in a good parse

tree or not. To efficiently obtain these subtrees,

we set a local window that bounds a node from

its left side, right side and bottom. We then ex-

tract the maximum subtree inside this window,

means that we cut off those nodes that are too

distant in sequential order or too deep in a tree.

This subtree extraction process however often

results in very large instances which are extreme-

ly sparse in the training data, therefore it is nec-

essary to keep smaller subtrees as back-offs. In

most cases, however, it is prohibitively expen-

sive to enumerate all the smaller subtrees. In-

stead of enumeration, we design a back-off strat-

egy that select subtrees by attempting to leave

out nodes that are far away from the subtree's

root and keeps those that are nearby. Precisely,

after extracted the first subtree of a node, we

vary the three boundaries (the left, the right and

John

saw

.

the

man

inthere

coat

Subtree

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

Context

Subtree

saw

man

inthere

John

saw

.

the

man

inthere

coat

#LEFT

#BOTTOM

#RIGHT

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

Context

Subtree

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

John

saw

man

Context

John

saw

.

the

man

inthere

coat

Subtree rooted at node “saw”

…

…

― 59 ― Copyright(C) 2013 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

the bottom boundary respectively) from their

original positions to positions that are closer to

the root of the subtree, such that it tightens up the

local window. For each possible combination of

the variable boundaries, we extract the largest

subtree from the new local window and add it to

the set of “trimmed subtrees”.

This back-off strategy comes from our obser-

vation that nodes that are close to the root may

provide more reliable information than those that

are distant. As it is infeasible to enumerate all

small subtrees as back-offs, throwing away the

redundant nodes from the outer part of a large

subtree is a reasonable choice.

Sibling subtree: We define the sibling subtree

structures for reranking as a natural extension of

the sibling factorization in (McDonald and Perei-

ra, 2006) from the word-based case to the sub-

tree-based case.

Specifically, for each node 𝑚 in a candidate

parse, its sibling subtree features is the collection

of all 3-tuples:

 〈 (𝑠 𝑖) (𝑚 𝑖)〉

where h represents the word form, the Part-of-

Speech tag, or the combination of the word form

and the Part-of-Speech tag of the head node of m;

s is the nearest sibling node of m in-between h

and m; and the expression (𝑖) represents the

𝑖 feature encoded on a trimmed subtree in the

set 𝑇 𝑖𝑚(), such that the trimmed subtree is the

one extracted within the local window . Here an

important point is that we make use of trimmed

subtrees extracted in the previous phase. As men-

tioned before, since we keep the history of

trimmed subtree extraction, it eliminates the need

to re-compute any subtree structures on the sib-

ling nodes and hence is efficient to encode.

Chain: A chain type feature encodes infor-

mation for a subtree that each node has exactly

one incoming edge and one outgoing edge, ex-

cept on the two ends (hence a “chain”). We ex-

tract all these kind of subtrees from a parse tree

in the candidates list with a parameter set to limit

the number of edges in the subtree. This type of

features emulates the common grandparent-

grandchildren structure in dependency parsing,

while we loosen the restriction on the order of

the subtree. It functions as a complementary for

other types of features.

3. Evaluation

We present our experimental results on two da-

tasets, the Penn English and Chinese Treebank

respectively. We convert the constituent structure

in the Treebank into dependency structure with

the tool Penn2Malt and the head-extraction rules

being (Yamada and Matsumoto, 2003) for Eng-

lish and (Zhang and Clark, 2008) for Chinese. To

align with previous work, for English dataset we

use the standard data division: section 02-21 for

training, section 24 for development, and section

23 for testing. For Chinese, we choose the Chi-

nese Treebank 5.0 with the following data divi-

sion: files 1-270 and files 400-931 for training,

files 271-300 for testing, and files 301-325 for

development. As our system assumes Part-of-

Speech tags as input, we use MXPOST, a

MaxEnt tagger (Ratnaparkhi, 1996) to automati-

cally tag the English test data which is trained on

the same training data. For Chinese we just use

the gold standard Part-of-Speech tags in evalua-

tion.

For the evaluation, we apply unlabeled at-

tachment score (UAS) to measure the effective-

ness of our method, which is the percentage of

words that correctly identified their heads.

We trained a second-order sibling-factored

parser emulating models in the MSTParser de-

scribed in (McDonald and Pereira, 2006) by the

averaged perceptron algorithm (Collins, 2002) as

our baseline parser; We chose the algorithm de-

scribed in (Huang and Chiang, 2005) for produc-

ing the K-best list for its efficiency; We used 30-

way cross-validation on the identical training

dataset to provide training data for the rerankers;

and we used the following parameter setting for

the feature sets throughout the experiments:

K=50; the left, right and bottom boundary for the

trimmed subtree features are 10, 10 and 5 respec-

tively.

3.1 Experimental Results

We show the experimental results for both Eng-

lish and Chinese in Table 1. Each row in this ta-

ble shows the UAS of the corresponding system.

“McDonald06” stands for the second-order mod-

el in the MSTParser (McDonald and Pereira,

2006). “Yu08” stands for the probabilistic Chi-

nese parser in (Yu et al., 2008). “Koo10” stands

for the Model 1 in (Koo and Collins, 2010)

which is a third-order model. “Martins10” stands

for the turbo parser proposed in (Martins et al.,

2010). “Baseline” is our duplicated implementa-

tion of “McDonald06” and is used as the base

parsers for our reranker, denoted as “Reranked”

in this table. “Baseline+Hall07” stands for the

baseline parser cascading our implementation of

the reranker described in (Hall, 2007), which

adopted a feature set similar with the constituent

― 60 ― Copyright(C) 2013 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

System English UAS Chinese UAS

McDonald06 91.5

Yu08 87.26

Koo10 93.04

Martins10 93.26

Baseline 91.88 87.39

Baseline+Hall07 91.91

Reranked 93.37 89.16

Chen09
+
 93.16 89.91

Suzuki09
+
 93.79

Table 1. English and Chinese UAS of previous

work, our baseline parsers, and reranked results.

“
+
”: semi-supervised parsers.

parse reranker (Charniak and Johnson, 2005); we

add this system for a comparison with our re-

ranking approach. “Chen09” and “Suzuki09” are

parsers using semi-supervised methods (Chen et

al., 2009; Suzuki et al., 2009).

As we can see from the results, for English,

the accuracy increased from 91.88%(“Baseline”)

to 93.37%(“Reranked”) for the second-order

parse reranker. This result is much higher than

“Baseline+Hall07” which yielded an accuracy of

91.91% that is only slightly higher than the base-

line. For Chinese, the accuracy increased from

87.39% to 89.16%. It also shows that our rerank-

ing systems obtain the highest accuracy among

supervised systems. For English, our reranker

even slightly outperforms “Martins10”, the turbo

parser which to the best of our knowledge

achieved the highest accuracy in Penn Treebank.

Although our rerankers are beaten by some semi-

supervised systems “Suzuki09” and “Chen09”,

but as our reranking approach is totally orthogo-

nal with these semi-supervising methods, it is

promising to further improve the accuracy by

combing these techniques.

4. Conclusion

We have proposed a novel approach for depend-

ency parse reranking that extracts complex struc-

tures for collecting linguistic evidence, and effi-

cient feature back-off strategy is proposed to re-

lieve data sparsity. Experiments have demon-

strated effectiveness of our method, and signifi-

cant improvement over the baseline system as

well as other known systems have been observed.

References

E. Charniak and M. Johnson. 2005. Coarse-to-fine N-

best Parsing and MaxEnt Discriminative Reranking.

In Proceedings of the 43rd ACL.

M. Collins. 2002. Discriminative Training Methods

for Hidden Markov Models: Theory and Experi-

ments with Perceptron Algorithms. In Proceedings

of the 7th EMNLP, pages 1–8.

W. Chen, J. Kazama, K. Uchimoto and K. Torisawa.

2009. Improving Dependency Parsing with Sub-

trees from Auto-Parsed Data, In Proceedings of

EMNLP2009, pages 570-579.

K. Hall. 2007. K-best Spanning Tree Parsing. In Pro-

ceedings of ACL 2007.

K. Hayashi, T. Watanabe, M. Asahara and Y. Matsu-

moto. 2011. Third-order Variational Reranking on

Packed-Shared Dependency Forests. In Proceed-

ings of EMNLP 2011, pages 1479-1488.

L. Huang and D. Chiang. 2005. Better K-best Parsing.

In Proceedings of the IWPT, pages 53–64.

T. Koo and M. Collins. 2010. Efficient Third-order

Dependency Parsers. In Proceedings of the 48th

ACL, pages 1–11.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2010.

Turbo Parsers: Dependency Parsing by Approxi-

mate Variational Inference. In Proceedings of

EMNLP 2010, pages 34–44.

R. McDonald and F. Pereira. 2006. Online Learning

of Approximate Dependency Parsing Algorithms.

In Proceedings of the 11th EACL, pages 81–88.

A. Ratnaparkhi. 1996. A Maximum Entropy Model

for Part-Of-Speech Tagging. In Proceedings of the

1st EMNLP, pages 133–142.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins.

2009. An Empirical Study of Semi-supervised

Structured Conditional Models for Dependency

Parsing. In Proceedings of EMNLP 2009, pages

551–560.

H. Yamada and Y. Matsumoto. 2003. Statistical De-

pendency Analysis with Support Vector Machines.

In Proceedings of the IWPT 2003, pages 195–206.

K. Yu, D. Kawahara, and S. Kurohashi. 2008. Chi-

nese Dependency Parsing with Large Scale Auto-

matically Constructed Case Structures. In Proceed-

ings of Coling 2008, pages 1049–1056.

Y. Zhang and S. Clark. 2008. A Tale of Two Parsers:

Investigating and Combining Graph-based and

Transition-based Dependency Parsing. In Proceed-

ings of EMNLP 2008, pages 562–571.

― 61 ― Copyright(C) 2013 The Association for Natural Language Processing.
All Rights Reserved.　　　　　 　　 　　　 　　　　　　　　　　

